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1 Introduction: motivation

• The Ap theorem
In the celebrated paper [26], B. Muckenhoupt characterized the class of weights for

which the Hardy–Littlewood maximal operator is bounded on Lp(w); the surprisingly
simple necessary and sufficient condition is the celebrated Ap condition of Mucken-
houpt, namely ‖M‖Lp(w) is finite if and only if the quantity

[w]Ap := sup
Q

(
−
∫
Q

w(x) dx

)(
−
∫
Q

w(x)1−p′ dx

)p−1

(1.1)

is finite. We will call it the Ap constant of the weight although some authors call it the
“characteristic” or the “norm” of the weight. The operator norm ‖M‖Lp(w) will depend
somehow upon the Ap constant of w, but the first result expressing this dependency
was proved by S. Buckley [2] as part of his Ph.D. thesis:

Let 1 < p < ∞ and let w ∈ Ap, then the Hardy-Littlewwod maximal
function satisfies the following operator estimate:

‖M‖Lp(w) ≤ cn p
′ [w]

1
p−1

Ap
(1.2)

namely,

sup
w∈Ap

1

[w]
1
p−1

Ap

‖M‖Lp(w) ≤ cn p
′.
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Furthermore the result is sharp in the sense that: for any ε > 0

sup
w∈Ap

1

[w]
1
p−1
−ε

Ap

‖M‖Lp(w) =∞ (1.3)

Buckley showed with an specific example in (1.2) that the exponent is optimal but the
explanation why this exponent is the correct one is due to the following fact:

‖M‖Lp(Rn) ≈
1

p− 1
p→ 1

as shown in [24] as part of a general phenomena.
• The Fefferman-Stein inequality
More or less at the same time the following inequality was proved by C. Fefferman

and E. Stein [10] for the Hardy-Littlewood maximal function:

‖Mf‖L1,∞(w) ≤ c

∫
Rn
|f |Mwdx, (1.4)

The inequality (1.4) is interesting on its own because it is an improvement of the classi-
cal weak-type (1, 1) property of the Hardy-Littlewood maximal operator M . However,
the crucial new point of view is that it can be seen as a sort of duality for M since the
following Lp inequality as a consequence:∫

Rn
(Mf)pw dx ≤ cp

∫
Rn
|f |pMwdx f,w ≥ 0. (1.5)

This estimate follows from the classical interpolation theorem of Marcinkiewicz al-
though a direct proof can be given avoiding interpolation. Both results (1.4) and (1.5)
were proved by C. Fefferman and E.M. Stein in [10] to derive the following vector-valued
extension of the classical Hardy-Littlewood maximal theorem: for every 1 < p, q <∞,
there is a finite constant c = cp,q such that∥∥∥∥(∑

j

(Mfj)
q
) 1
q

∥∥∥∥
Lp(Rn)

≤ c

∥∥∥∥(∑
j

|fj|q
) 1
q

∥∥∥∥
Lp(Rn)

. (1.6)

This is a very deep theorem and has been used a lot in modern harmonic analysis
explaining the central role of inequality (1.4). Nevertheless, th
• The A1 condition
The Ap condition defined above makes sense when p ∈ (1,∞), however there are

two extreme cases A1 and A∞ which play a central role in the theory.
The A1 class of weights can be defined immediately from Fefferman-Stein’s inequal-

ity (1.4) and in fact this is what the authors did in the paper: if the weight w ∈ A1

then

‖Mf‖L1,∞(w) ≤ cn [w]A1

∫
Rn
|f |wdx.
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The A1 condition can be read directly from Fefferman-Stein’s inequality (1.4) and
in fact was already introduced by these authors in that paper: the weight w is an A1

weight or satisfies the A1 condition if there is a finite constant c such that

Mw ≤ cw a.e. (1.7)

As before, we denote by [w]A1 the smallest of these constants c. Then if w ∈ A1

‖Mf‖L1,∞(w) ≤ cn [w]A1

∫
Rn
|f |wdx.

This follows from (1.4) but also it follows from (1.5) that

‖M‖Lp(w) ≤ cn p
′ [w]

1/p
A1

We pint out that the A1 condition can be defined from (1.1) by letting p goes down to
1.
• The A∞ condition
To define the A∞ class of weights the key observation is that the Ap condition is

decreasing on p:
[w]Aq ≤ [w]Ap 1 ≤ p < q

implying that Ap ⊂ Aq. Hence it is natural to define

A∞ := ∪p>1Ap.

The A∞ class of weights shares a lot of interesting properties, we remit to [7] for more
information. The problem is that this definition does not lead to any appropriate
constant. It is known that another possible way of defining a constant for this class is
by means of the quantity

[w]expA∞
:= sup

Q
−
∫
Q

w exp
(
−
∫
Q

− logw
)
,

as can be found in for instance in [13]. This constant was introduced by Hruščev in
[14]. This definition is natural because is obtained letting p → ∞ in the definition of
the Ap constant. In fact we have by Jensen’s inequality:

[w]expA∞
≤ [w]Ap .

On the other hand in [16] the authors use a “new” A∞ constant (which was originally
introduced by Fujii in [11] and rediscovered later by Wilson in [36]) which is more
suitable.

3



Definition 1.1.

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ) dx.

Observe that [w]A∞ ≥ 1 by the Lebesgue differentiation theorem.
It is not difficult to show using the logarithmic maximal function

M0f := sup
Q

exp
(
−
∫
Q

log|f |
)
χQ

that
[w]A∞ ≤ cn [w]expA∞

See [16] for details. In fact it is shown in the same paper with explicit examples that
[w]A∞ is much smaller than [w]expA∞

(actually exponentially smaller).
We also refer the reader to the forthcoming work of Duoandikoetxea, Martin-Reyes

and Ombrosi [8] for a discussion regarding different definitions of A∞ classes (see also
[7]).
• Improving the Ap theorem: the mixed Ap − A∞ approach
As was mentioned above the exponent in Buckley’s estimate (1.2) cannot be im-

proved, however that estimate can be really improved in a different way.

Theorem 1.1. Let 1 < p <∞ and let σ = w−1/(p−1), then

‖M‖Lp(w) ≤ cnp
′([w]Ap [σ]A∞

)1/p
. (1.8)

Using the duality relationship

[σ]
1
p′

Ap′
= [w]

1
p

Ap

we see immediately that (
[w]Ap [σ]A∞

)1/p ≤ [w]
1
p−1

Ap

yielding (1.2).
This result and Theorem 1.2 below were first proved in [16] with a simplified proof

in [18]. A key estimate was the following result.

Theorem 1.2 (An optimal reverse Hölder inequality). Define rw := 1 +
1

cn [w]A∞
,

where cn is a dimensional constant. Note that r′w ≈ [w]A∞.

a) If w ∈ A∞, then (
−
∫
Q

wrw
)1/rw

≤ 2−
∫
Q

w.

4



b) Furthermore, the result is optimal up to a dimensional factor: If a weight w
satisfies the RHI, i.e., there exists a constant K such that(

−
∫
Q

wr
)1/r

≤ K−
∫
Q

w,

then there exists a dimensional constant c = cn, such that [w]A∞ ≤ cnK r′.

We mention that some similar one dimensional results have been independently
obtained by O. Beznosova and A. Reznikov in [1] by means of the Bellman function
technique.

The original proof of this result can be found in [16] but it was simplified an im-
proved in [18] (it can be found as well in Paseky lectures notes [31]). Also it should be
mentioned that this reverse Hölder property was completely avoided in [32] to derive
the mixed Ap − A∞ result (1.8).

The following corollary which is usually called the open property of the Ap condition,
is an important consequence.

Corollary 1.1 (The precise open property). Let 1 < p < ∞ and let w ∈ Ap. Then
w ∈ Ap−ε where

ε =
p− 1

r(σ)′
=

p− 1

1 + τn[σ]A∞

where as usual σ = w1−p′ . Furthermore

[w]Ap−ε ≤ 2p−1 [w]Ap

Proof. Since w ∈ Ap, σ ∈ Ap′ ⊂ A∞, and hence

−
∫
Q

w
(
−
∫
Q

σr(σ)
) p−1
r(σ) ≤ −

∫
Q

w
(

2−
∫
Q

σ
)p−1

.

Choose ε so that p−1
r(σ)

= p−ε−1, namely ε = p−1
r(σ)′

and observe that ε > 0 and p−ε > 1.
This yields that w ∈ Ap−ε.

A previous already similar result was obtained for A1 weights in [22] that played
an important role in that and subsequent papers. Later on an interesting extension to
Ap weights, where the exponent rw is r′w ≈ ‖M‖Lp′ (σ), was further obtained in [21].
• Factorization.
Muckenhoupt already observed in [26] that it follows from the definition of the A1

class of weights that if w1, w2 ∈ A1, then the weight

w = w1w
1−p
2
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is an Ap weight. Furthermore, with our definitions, it follows easily

[w]Ap ≤ [w1]A1 [w2]p−1
A1

(1.9)

He conjectured that any Ap weight can be factored out in this fashion. This conjecture
was proved by P. Jones’s showing that if w ∈ Ap then there are A1 weights w1, w2 such
that w = w1w

1−p
2 . It is also well known that the modern approach to this question

uses completely different path and it is due to J. L. Rubio de Francia as can be found
in [13] and also in [7]. In these notes we will use the ”easy” part of the theorem and
more precisely the estimate (1.9).
• Two weight problem: sharp Sawyer’s theorem
Another highlight of the theory of weights is the two weight characterization of the

maximal theorem due to E. Sawyer [35] (see also [13]):

Let 1 < p < ∞, and let u, σ two unrelated weights, then there is a finite
constant C such that

‖M(fσ)‖Lp(u) ≤ C ‖f‖Lp(σ) (1.10)

if and only if there is a finite constant K such that for any cube Q(∫
Q

M(σ χQ)p udx

)1/p

≤ K σ(Q)1/p <∞

K. Moen proved in [25] a quantitative version of Sawyer’s theorem as follows: if we
let

[u, σ]Sp = sup
Q

(∫
Q
M(σ χQ)p udx

)1/p

σ(Q)1/p

then we have.

Theorem 1.3. Let 1 < p <∞ and let u, σ and ‖M‖ as above. Then

[u, σ]Sp ≤ ‖M‖ ≤ cn p
′ [u, σ]Sp

In a recent joint work with E. Rela [32] an application of this result has been found
obtaining an improvement of the mixed Ap − A∞ Theorem 1.1 as well as some other
two weight estimates with “bumps” conditions providing new quantitative estimates of
results derived in [29].
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2 Singular Integrals: The A1 theory

Very recently, the so called Muckenhoupt-Wheeden conjecture has been disproved by
Reguera-Thiele in [34]. This conjecture claimed that there exists a constant c such
that for any function f and any weight w

‖Hf‖L1,∞(w) ≤ c

∫
R
|f |Mwdx. (2.1)

where H is the Hilbert transform. The failure of the conjecture was previously obtained
by M.C. Reguera in [33] for a special model operator T instead of H. This conjecture
was motivated by C. Fefferman and E. Stein inequality (1.4) for the Hardy-Littlewood
maximal function.

That this conjecture was believed to be false was already mentioned in [28] where
the best positive result in this direction so far can be found, and where M is replaced
by ML(logL)ε , i.e., a maximal type operator that is “ε-logarithmically” bigger than M :

‖Tf‖L1,∞(w) ≤ cT,ε

∫
Rn
|f |ML(logL)ε(w)dx w ≥ 0.

where T is the Calderón-Zygmund operator T . Until very recently the constant of the
estimate did not play any essential role except, perhaps, for the fact that it blows up.
If we check the computations in [28] we find that cε ≈ e

1
ε . It turns out that improving

this constant would lead to understanding interesting questions in the area. Recently
this estimate has been improved in [17] where the exponential blow up e

1
ε has been

reduced to a linear blow up 1
ε
. A second improvement consists of replacing T by the

maximal singular integral operator T ∗. The method in [28] cannot be used directly
since the linearity of T played a crucial role in the argument.

Theorem 2.1. Let T be a Calderón-Zygmund operator with maximal singular integral
operator T ∗. Then for any 0 < ε ≤ 1,

‖T ∗f‖L1,∞(w) .
cT
ε

∫
Rn
|f(x)|ML(logL)ε(w)(x) dx w ≥ 0 (2.2)

It seems that the right conjecture is the following:

‖T ∗f‖L1,∞(w) ≤ cT

∫
Rn
|f(x)|M

L log logL
(w)(x) dx w ≥ 0. (2.3)

We remark that the operator ML(logL)ε is pointwise smaller than Mr = MLr , r > 1
where Mr(w) = M(wr)1/r.

In these lectures we will present a baby version of this result which can be essentially
found in [23] and [22] with the improvements obtained in [16]. We will provide some
hints on how to prove Theorem 2.1 together with Lp versions of that in Section 6.
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To prove this result we have to study first the corresponding weighted Lp(w) esti-
mates with 1 < p < ∞ and w ∈ A1 being the result this time fully sharp. The final
part of the proofs of both theorem can be found in Sections 4 and 5 and are essentially
. Again we remit to [30] for a more complete discussion about these estimates and
their variants.

We state now the main theorems of this chapter. From now on T will always denote
any Calderón-Zygmund operator and we assume that the reader is familiar with the
classical unweighted theory.

Our goal is to prove the following results.

Theorem 2.2. Let T be a Calderón–Zygmund operator and let 1 < p <∞. Then for
any weight w and r > 1,

‖Tf‖Lp(w) ≤ cTpp
′(r′)

1
p′ ||f ||Lp(Mrw). (2.4)

Now, using the sharp exponent in the reverse Hölder inequality for weights in the
A∞ class from Theorem 1.2 the following result follows easily.

Corollary 2.1. Let T be a Calderón–Zygmund operator and let 1 < p < ∞. Then if
w ∈ A∞ we obtain

‖Tf‖Lp(w) ≤ cTpp
′[w]

1/p′

A∞
||f ||Lp(Mw), (2.5)

and if w ∈ A1,

‖Tf‖Lp(w) ≤ cTpp
′[w]

1/p′

A∞
[w]

1/p
A1
||f ||Lp(w) (2.6)

and hence
‖T‖Lp(w) ≤ cT pp

′ [w]A1 . (2.7)

The exponent in inequality (2.7) is best possible similarly as in (1.2).
A very nice application of a very especial extrapolation theorem obtained by J.

Duoandikoetxea in [6] can be deduced from (2.7).

Corollary 2.2. Under the same assumption as before we have, if 1 ≤ q < p

‖T‖Lp(w) ≤ cT,p,q [w]Aq .

As an application of (2.4) we obtain the following endpoint estimate.

Theorem 2.3. Let T be a Calderón–Zygmund operator. Then for any weight w and
r > 1,

||Tf ||L1,∞(w) ≤ cT log (e+ r′)||f ||L1(Mrw). (2.8)
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Now, using again the reverse Hölder inequality for weights from Theorem 1.2 we
get the following consequence.

Corollary 2.3. [The logarithmic growth theorem]
Let T be a Calderón–Zygmund operator. Then

1. If w ∈ A∞

||Tf ||L1,∞(w) ≤ C log (e+ [w]A∞)||f ||L1(Mw).

2. If w ∈ A1

||Tf ||L1,∞(w) ≤ cT [w]A1 log (e+ [w]A∞)||f ||L1(w).

We remark that these theorems can be further improved by replacing T by T ∗,
the maximal singular integral operator. Again, the method presented now cannot be
applied because is based on the fact that T is linear while T ∗ is not. See [17].

In view of [27] this could be the best possible result, namely [w]A1 log (e+ [w]A∞)
cannot be replaced by [w]A1 log (e+ [w]A∞)α, with 0 ≤ α < 1. This came as a big
surprise.

3 Estimates involving A∞ weights

In Harmonic Analysis, there are a number of important inequalities of the form∫
Rn
|Tf(x)|pw(x) dx ≤ C

∫
Rn
|Sf(x)|pw(x) dx, (3.1)

where T and S are operators. Typically, T is an operator with some degree of singu-
larity (e.g., a singular integral operator), S is an operator which is, in principle, easier
to handle (e.g., a maximal operator), and w is in some class of weights.

The standard technique for proving such results is the so-called good-λ inequality
of Burkholder and Gundy. These inequalities compare the relative measure of the level
sets of S and T : for every λ > 0 and ε > 0 small,

w({y ∈ Rn : |Tf(y)| > 2λ, |Sf(y)| ≤ λε}) ≤ C εw({y ∈ Rn : |Sf(y)| > λ}). (3.2)

Here, the weight w is usually assumed to be in the class A∞ = ∪p>1Ap. Given inequality
(3.2), it is easy to prove the strong-type inequality (3.1) for any p, 0 < p <∞, as well
as the corresponding weak-type inequality

‖Tf‖Lp,∞(w) ≤ C ‖Sf‖Lp,∞(w). (3.3)
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In these notes the special case of

‖Tf‖Lp(w) ≤ c ‖Mf‖Lp(w) (3.4)

where T is a Calderón-Zygmund operator and M is the maximal function, will play
a central role in the proof of Theorem 2.2. Estimate (3.4) was proved by Coifman-
Fefferman in the celebrated paper [3]. In our context the weight w will also satisfy the
A∞ condition but the problem is that the behavior of the constant is too rough. We
need a more precise result for very specific weights.

Lemma 3.1. Let w be any weight and let 1 ≤ p, r <∞. Then, there is a constant
c = c(n, T ) such that:

‖Tf‖Lp(Mrw)1−p) ≤ cp ‖Mf‖Lp(Mrw)1−p)

This is the main improvement in [23] of [22] where we had obtained logarithmic
growth on p. It is an important step towards the proof of the Theorem 2.2.

The above mentioned good λ of Coifman-Fefferman is not sharp because instead of
c p gives C(p) ≈ 2p because

[(Mrw)1−p)]Ap ≈ (r′)p−1

The proof of this lemma is tricky and it combines another variation the of Rubio
de Francia algorithm together with a sharp L1 version of (3.4):

‖Tf‖L1(w) ≤ c[w]Aq‖Mf‖L1(w) w ∈ Aq, 1 ≤ q <∞

The original proof given in [23] of this estimate was based on an idea of R. Fefferman-
Pipher from [9] which combines a sharp version of the good-λ inequality of S. Buckley
together with a sharp reverse Hölder property of the weights. The result of Buckley
establishes a very interesting exponential improvement of the good-λ estimate of above
mentioned Coifman-Fefferman estimate as can be found in [2]:

|{x ∈ Rn : T ∗(f) > 2λ,Mf < γλ}| ≤ c1e
−c2/γ|{T ∗(f) > λ}| λ, γ > 0 (3.5)

where T ∗ is the maximal singular integral operator. New more flexible arguments can
be found in [17] leading to the following.

Lemma 3.2. Let w ∈ A∞. Then

‖Tf‖L1(w) ≤ c [w]A∞ ‖Mf‖L1(w).

We now finish this section by proving the “tricky” Lemma 3.1. The proof is based
on the following lemma which is another variation of the Rubio de Francia algorithm.
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Lemma 3.3. Let 1 < s <∞ and let w be a weight. Then there exists a nonnegative
sublinear operator R satisfying the following properties:
(a) h ≤ R(h)
(b) ‖R(h)‖Ls(w) ≤ 2‖h‖Ls(w)

(c) R(h)w1/s ∈ A1 with
[R(h)w1/s]A1 ≤ cs′

Proof. We consider the operator

S(f) =
M(f w1/s)

w1/s

Since ‖M‖Ls ∼ s′, we have

‖S(f)‖Ls(w) ≤ cs′‖f‖Ls(w).

Now, define the Rubio de Francia operator R by

R(h) =
∞∑
k=0

1

2k
Sk(h)

(‖S‖Ls(w))k
.

It is very simple to check that R satisfies the required properties.

Proof of Lemma 3.1. We are now ready to give the proof of the “tricky” Lemma,
namely to prove ∥∥∥∥ Tf

Mrw

∥∥∥∥
Lp(Mrw)

≤ cp

∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp(Mrw)

By duality we have,∥∥∥∥ Tf

Mrw

∥∥∥∥
Lp(Mrw)

= |
∫
Rn
Tf h dx| ≤

∫
Rn
|Tf |h dx

for some ‖h‖Lp′ (Mrw) = 1. By Lemma 3.3 with s = p′ and v = Mrw there exists an
operator R such that
(A) h ≤ R(h)
(B) ‖R(h)‖Lp′ (Mrw) ≤ 2‖h‖Lp′ (Mrw)

(C) [R(h)(Mrw)1/p′ ]A1 ≤ cp.
We want to make use of property (C) combined with the following two facts: First,

if w1, w2 ∈ A1, and w = w1w
1−p
2 ∈ Ap, then by (1.9)

[w]Ap ≤ [w1]A1 [w2]p−1
A1

Second, if r > 1 then (Mf)
1
r ∈ A1 by the Coifman-Rochberg theorem from [4] but

we need a more precise estimate which follows from the proof:

[(Mf)
1
r ]A1 ≤ cn r

′.
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Hence combining we obtain

[R(h)]A3 = [R(h)(Mrw)1/p′
(
(Mrw)1/2p′

)−2
]A3

≤ [R(h)(Mrw)1/p′ ]A1 [(Mrw)1/2p′ ]2A1

≤ cp.

Therefore, by Lemma 3.2 and by properties (A) and (B),∫
Rn
|Tf |h dx≤

∫
Rn
|Tf |R(h) dx

≤ c[R(h)]A3

∫
Rn
M(f)R(h) dx

≤ cp
∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp(Mrw)

‖h‖Lp′ (Mrw).

4 Proof of Theorem 2.2

We will prove
‖Tf‖Lp′ (Mrw)1−p′ ) ≤ cp′ (r′)1−1/pr‖f‖Lp′ (w1−p′ )

from which (2.4) follows since t1/t ≤ 2, t ≥ 1.
We consider the equivalent dual estimate:

‖T tf‖Lp′ (Mrw)1−p′ ) ≤ cp′ (r′)1−1/pr‖f‖Lp′ (w1−p′ )

Then use the “tricky” Lemma 3.1 since T t is also a Calderón-Zygmund operator

‖ T
tf

Mrw
‖Lp′ (Mrw)) ≤ p′ c ‖ Mf

Mrw
‖Lp′ (Mrw))

We could use now Theorem 1.3 but we use a more direct method. Indeed, by Hölder’s
inequality with exponent pr,

1

|Q|

∫
Q

fw−1/pw1/p ≤
(

1

|Q|

∫
Q

wr
)1/pr (

1

|Q|

∫
Q

(fw−1/p)(pr)′
)1/(pr)′

and hence,

(Mf)p
′ ≤ (Mrw)p

′−1M
(

(fw−1/p)(pr)′
)p′/(pr)′
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From this, and by the classical unweighted maximal theorem with the sharp con-
stant, ∥∥∥∥ Mf

Mrw

∥∥∥∥
Lp′ (Mrw)

≤ c
( p′

p′ − (pr)′

)1/(pr)′
∥∥∥∥ fw
∥∥∥∥
Lp′ (w)

= c
(rp− 1

r − 1

)1−1/pr
∥∥∥∥ fw
∥∥∥∥
Lp′ (w)

≤ cp (r′)1−1/pr

∥∥∥∥ fw
∥∥∥∥
Lp′ (w)

.

5 Proof of Theorem 2.3

The proof is based on initial ideas from [28]. Applying the Calderón-Zygmund de-
composition to f at level λ, we get a family of pairwise disjoint cubes {Qj} such
that

λ <
1

|Qj|

∫
Qj

|f | ≤ 2nλ

Let Ω = ∪jQj and Ω̃ = ∪j2Qj . The “good part” is defined by

g =
∑
j

fQjχQj(x) + f(x)χΩc(x)

and the “bad part” b as

b =
∑
j

bj

where
bj(x) = (f(x)− fQj)χQj(x)

Then, f = g + b.
However, it turns out that b is “excellent” and g is really “ugly”. It is so good the

b part that we obtain the maximal function on the right hand side:

w{x ∈ (Ω̃)c : |Tb(x)| > λ} ≤ c

λ

∫
Rn
|f |Mwdx

by a well known argument using the cancellation of the bj and that we omit. Also

the term w(Ω̃) is the level set of the maximal function and the Fefferman-Stein applies
(again we obtain the maximal function on the right hand side).

Combining we have

w{x ∈ Rn : |Tf(x)| > λ}≤w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2}
+w{x ∈ (Ω̃)c : |Tg(x)| > λ/2}.
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and the first two terms are already controlled:

w(Ω̃) + w{x ∈ (Ω̃)c : |Tb(x)| > λ/2} ≤ c

λ

∫
Rn
|f |Mwdx.

Now, by Chebyschev and Theorem 2.2: if p > 1 and r > 1 we have

λw{x ∈ (Ω̃)c : |Tg(x)| > λ/2}

≤ λ cT (p′)p(r′)p−1 1

λp

∫
Rn
|g|pMr(wχ(Ω̃)c)dx

≤ cT (pp′)p(r′)p−1

∫
Rn
|g|Mr(wχ(Ω̃)c)dx.

By known standard geometric arguments we have∫
Rn
|g|Mr(wχ(Ω̃)c)dx ≤ cn

∫
Rn
|f |Mrwdx.

Now if we choose p = 1 + 1
log(e+r′)

we evan continue with

≤ cT log(r′)

∫
Rn
|f |Mrwdx r > 1.

This estimate combined with the previous one completes the proof.

6 Proof/discussion of Theorem 2.1
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