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These notes were prepared for lectures at the Summer School on
Nonlinear Analysis, Function Spaces and Applications (NAFSA 10),
June 9-15, 2014 in Třešt’, Czech Republic. They are based on material
in various joint papers ([1], [18], [23], [24], [29], [31], [32]). The notes
could not have been written without the extensive contributions of my
coauthors Jong-Guk Bak, Gustavo Garrigós, Yaryong Heo, Sanghyuk
Lee, Fedya Nazarov, and Keith Rogers. Of course any deficiencies and
errors in these notes are my responsibility.

1. Fourier multipliers

Given a translation invariant operator T which is bounded from
S(Rd) to some Lq(Rd) there is a tempered distribution K so that
Tf = K ∗ f for all f ∈ S(Rd) (see [48]). We denote by Convqp the

space of all K ∈ S ′(Rd) such that

‖K ∗ f‖q ≤ C‖f‖p
for all f ∈ S(Rd), and set

‖K‖Convqp = sup{‖K ∗ f‖q : f ∈ S, ‖f‖p = 1}
The convolution operators can also be written as a multiplier transfor-
mation

K ∗ f = F−1[mf̂ ]

where the Fourier transform of a Schwartz function in Rd is given by

Ff(ξ) = f̂(ξ) =

∫
f(y)e−i〈y,ξ〉dy

and F−1[g](x) = (2π)−d
∫
g(ξ)ei〈x,ξ〉dξ is the inverse Fourier transform

of g. The space of Fourier transforms of distributions in Convqp is
denoted by M q

p and the Fourier transform is an isometric isomorphism
F : Convqp → M q

p , i.e. ‖m‖Mq
p
= ‖F−1[m]‖Convqp . We also abbreviate
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Convp = Convpp andMp =Mp
p . Effective characterizations of the spaces

Convqp or M q
p are known only in a few cases, see [25], [48]:

• Conv11 is the space of finite Borel measures (with the total variation
norm).

• For 1 < p ≤ ∞, Convq1 = Lq, with identifications of the norms.

• M2 = L∞, with identifications of the norms.

Moreover, M q
p = {0} for p > q, and M q

p =Mp′

q′ ,
1
p
+ 1

p′
= 1

q
+ 1

q′
= 1.

Of particular interest are the radial Fourier multipliers on Rd

m(ξ) = h(|ξ|) .
We shall assume throughout that d ≥ 2. The radial multipliers cor-
respond to operators commuting with translations and rotations, i.e.
convolution operators with radial kernels, and also to spectral multi-
plier operators for the Laplace operator, via

h(
√
−∆)f = F−1[h(| · |)f̂ ] .

A great deal of research has been done on a class of radial model mul-
tipliers which are now called of Bochner-Riesz type. Given a smooth
bump function φ supported in (−1/2, 1/2) we define

hδ(s) = φ(1−s
δ
)

so that hδ(| · |) is supported on an annulus of width ∼ δ.

Conjecture I: For 1 < p < 2d
d+1

, one has

(1.1) ‖hδ(| · |)‖Mp . δ−λ(p), λ(p) = d(1/p− 1/2)− 1/2

This is referred to as the Bochner-Riesz conjecture since a resolution
would prove that the Bochner-Riesz means of the Fourier integral

Rλf(x) =
1

(2π)d

∫

|ξ|≤t

(
1− |ξ|

t

)λ
f̂(ξ)ei〈x,ξ〉dξ .

converge to f in Lp(Rd) if λ > λ(p). Inequality (1.1) is known in two
dimensions for the full range, and various partial results have been
proved in higher dimensions (see [15],[12], [17], [5], [6], [55], [28], [7]).
For the relationships of various related conjectures see [51], [52].

A somewhat more general problem involves classical function spaces
measuring regularity, in particular the L2 type Sobolev spaces L2

α or
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the Besov spaces B2
α,p. The following estimate would be optimal within

this class of spaces.

Conjecture II: Let h be supported in a compact subinterval J of (0,∞).
The estimate

(1.2) ‖h(| · |)‖Mp . ‖h‖B2
α,p
, α = d(1/p− 1/2)

holds for 1 ≤ p < 2d
d+1

.

Partial results with the condition α > d(1/p − 1/2) and related
square-function estimates are in [9], [11], [13], [29], and a proof of the

endpoint B2
d(1/p−1/2),p bound, in the range 1 < p < 2(d+1)

d+3
can be found

in [30].

Inequality (1.2) is still far from a characterization of radial multipliers
(even those supported in (1/2, 2)). Consider the multiplier ht(s) =
χ(s)e−its where χ ∈ C∞

c (1/2, 2). It is closely related to the solution
operator for the wave equation. It is known (see [40]) that ‖ht(|·|)‖Mp .

t(d−1)(1/p−1/2) for t > 1, 1 ≤ p ≤ 2, but ‖ht‖B2
α,q

& tα and thus the

optimalMp bound cannot be derived from (1.2). An affirmative answer
to the following conjecture would close this gap.

Conjecture III: Let 1 < p < 2d
d+1

, and let h be supported in a compact
subinterval J of (0,∞). Then it

(1.3) ‖h(| · |)‖Mp ≈
∥∥F−1[h(| · |)]

∥∥
p

(with the implicit constants depending on J)?

Given that the weaker conjectures I and II are not completely re-
solved, we may have, for Conjecture III, to settle for smaller ranges of

p. It has been shown to hold in [23] for the range d ≥ 4, p < 2(d−1)
d+1

, and
no such result is currently known in dimensions 2 and 3. As in [23] the
proof of this conjecture would likely lead to a simple characterization
of all radial FLp multipliers for p < 2d

d+1
, as in:

Conjecture IV: Let m = h(| · |) be a bounded radial function on Rd and
define the convolution operator Th on Rd by

T̂hf(ξ) = h(|ξ|)f̂(ξ).
Let 1 < p < 2d

d+1
. Let η be any nontrivial Schwartz function on Rdand

let φ be any nonzero C∞
c function compactly supported on (0,∞). Then

Th is bounded on Lp if and only if

sup
t>0

td/p
∥∥Th[η(t·)]

∥∥
p
<∞
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The resolution of this conjecture would imply that in the above range
Th is bounded on Lp if and only if Th is bounded on the subspace Lp

rad
of

radial Lp functions. By Fefferman’s theorem [16] on the ball multiplier
(or some variant of it) this is clearly false for 2d

d+1
≤ p ≤ 2. Similar

arguments show that the condition p < 2d
d+1

is necessary in the three
previous conjectures.

These notes. In §2 we consider the case of general quasiradial multipli-
ers in M2

p and discuss a characterization for the case when the under
a decay assumption on the Fourier transform of the surface measure of
Σρ. When ρ is the Minkowski functional of a set with smooth bound-
ary (then P = I) we examine further the M q

1 classes and express the
condition F−1[m] ∈ Lq in terms of the one dimensional Fourier trans-
form of h. This is done in §3. In §4 we discuss a sharp theorem from
[18] on the Lp boundedness of convolution operators with radial kernels
when acting on radial functions, and in §5 we prove the same result for
radial multipliers acting on general functions. We shall focus on the
case where the multipliers are supported in (1/2, 2).

2. L2 Fourier restriction theorems and quasiradial M2
p

multipliers

In this section we shall first discuss a general version of the Stein-
Tomas restriction theorem and then deduce as a consequence a straight-
forward characterization of radial and quasi radial multipliers in M2

p ,

for the p-range of the L2 restriction theorem.

2.1. L2 Fourier restriction theorems. In the 1960’s Stein observed that
the Fourier transform of an Lp function can, for a nontrivial range of
p > 1 be restricted to some compact hypersurfaces with suitable curva-
ture assumptions. An almost sharp theorem for the sphere was proved
by Tomas [56], with an endpoint version due to Stein [46]. Further
results are in Greenleaf [20] and many other papers. Here we present
the rather general setup by Mockenhaupt [38] and by Mitsis [37], with
the endpoint version in a joint paper with Bak [1].

We are given a compactly supported Borel measure µ satisfying the
Fourier decay bound

(2.1) |µ̂(ξ)| . (1 + |ξ|)−β/2
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and the α-upper-regularity condition

(2.2) |µ(B(x, r))| . rα

for all balls B(x, r) with radius r.

Remark. For measures satisfying (2.2) the Hausdorff dimension of
the support is at least α. For measures satisfying (2.1) the Hausdorff
dimension of the support is at least β. The latter holds since for γ < β
the γ-energy

Iγ(µ) =

∫∫
|x− y|−γdµ(x)dµ(y) = C

∫
|ξ|γ−d|µ̂(ξ)|2dξ

is finite and for the Hausdorff dimension of supp(µ) we have

dim(supp(µ)) = sup{γ : Iγ(µ) <∞}
(see [35], [58]). For this reason the number

dimF(µ) = sup{β : sup
ξ
(1 + |ξ|)β/2|µ̂(ξ)| <∞}

is often called the Fourier dimension of µ.

Theorem 2.1. Let µ be as in (2.1), (2.2). Then

(2.3)

∫
|f̂(ξ)|2dµ . ‖f‖2p, p ≤ pcr =

4(d− α) + 2β

4(d− α) + β
.

The Lp norm on the right can be replaced by the smaller Lp,2 Lorentz-
norm.

Proof. Let T denote the Fourier transform, as an operator mapping Lp

to L2(dµ) (and as such a priori defined for L1 functions). The proofs
of Mockenhaupt and Mitsis, for the open range (1, pcr), follow Tomas’
argument in [56]. One first observes that

(2.4) T ∗Tf = f ∗ [µ̂(−·)] .
Indeed,

〈T ∗Tf, g〉 =
∫
f̂(ξ)ĝ(ξ)dµ(ξ)

=

∫
f̂(ξ)ĝ(−ξ)dµ(ξ)

=

∫
g(y)

∫
f̂(ξ)ei〈ξ,y〉dµ(ξ) dy

= (2π)d〈F−1[f̂ dµ], g〉 = f ∗ [µ̂(−·)] .
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Thus

(2.5) F : Lp,q → L2(dµ) ⇐⇒ µ̂∗ : Lp,q → Lp′,q′ .

Following Tomas split µ̂ =
∑∞

j=0 µ̂j, where µ̂0 is supported in {|ξ| ≤ 2}
and, for j ≥ 1

supp(µ̂j) ⊂ {2j−1 ≤ |ξ| ≤ 2j+1}.
This decomposition can be arranged such that µ0 = µ ∗ φ0, and, for
j ≥ 1, µj = µ ∗ 2jdφ(2j(x)), for suitable φ0, φ ∈ S(Rd).

It is easy to see that ‖f ∗ µ0‖p′ . ‖f‖p for 1 ≤ p ≤ 2. By (2.1),

‖µ̂j‖∞ . 2−jβ/2

for j ≥ 1, and hence

(2.6) ‖f ∗ µ̂j‖∞ . 2−jβ/2‖f‖1 .
By (2.2) we get, with N ≫ d,

|µj(x)| .
∫

2jd

(1 + 2j|x− y|)N dµ(y)

.

j∑

l=0

µ(B(x, 2−j+l)2jd2−lN + CN2
j(d−N)

.

j∑

l=0

2j(d−α)2−l(N−α) + CN2
j(d−N) . 2j(d−α)

and hence

(2.7) ‖f ∗ µ̂j‖2 . ‖µj‖∞‖f‖2 . 2j(d−α)‖f‖2 .
Interpolating (2.6) and (2.7) we get

‖f ∗ µ̂j‖p′ . 2−j(2(d−α)+β
2
− 2(d−α)+β

p
)‖f‖p

where the exponent is negative when p < pcr. Sum in j to get the
asserted inequality (2.3) for p < pcr.

For the endpoint inequality the familiar analytic families interpola-
tion argument (see e.g. [46] does not seem to work in the generality
considered here, moreover it does not seem to yield the better Lorentz
space bound. Instead one uses real methods (see [26], [21] for related
arguments).

A familiar argument by Bourgain [4] yields the restricted weak type
estimate

(2.8)
∥∥f ∗ µ̂

∥∥
Lp′cr,∞

. ‖f‖Lpcr,1
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or equivalently, for any f with |f | ≤ χE

meas({x : |f ∗ µ̂| > λ}) .
( |E|1/pcr

λ

)p′cr
.

To see this observe that for any R > 1
∣∣∣
∑

2j>R

f ∗ µ̂j(x)
∣∣∣ ≤ C0

∑

2j>R

2−jβ/2‖f‖1 ≤ C ′
0R

−β/2|E|.

Choose R = Rλ so that C ′
0R

−β/2
λ |E| = λ/2 (and thus Rλ ≈ (|E|/λ)2/β).

Then

meas
(
{x : |f ∗ µ̂| > λ}

)

. meas
(
{x : |

∑

2j≤Rλ

f ∗ µ̂j(x)| > λ/2}
)

. λ−2
∥∥∥

∑

2j≤Rλ

f ∗ µ̂j

∥∥∥
2

2
. λ−2

[
R

(d−a)
λ ‖f‖2

]2

. λ−2(|E|/λ)4(d−a)/β |E| . |E|
4(d−a)+β

β λ−
4(d−a)+2β

β

which is (|E|1/pcr/λ)p′cr.
The restricted weak type estimate implies, by (2.5),

(2.9) F : Lpcr,1 → L2(dµ) .

To upgrade this result to a strong type Lpcr → L2(dµ) (or even Lpcr,2 →
L2(dµ)) bound we first prove an Lpcr,1 → L2 estimates for the convo-
lutions f ∗ µ̂j. We claim that (2.9) implies

(2.10) ‖f ∗ µ̂j‖2 . 2j(d−α)/2‖f‖Lpcr,1 .

Indeed, since ‖µj‖∞ = O(2j(d−α)),

‖f ∗ µ̂j‖2 . ‖f̂ µj‖2 . 2j(d−α)/2
(∫

|f̂(ξ)|2|µj|dξ
)1/2

and, from (2.9),
(∫

|f̂(ξ)|2|µj|dξ
)1/2

.
(∫

2jd

(1 + 2j|ξ|)N
∫

|f̂(η + ξ)|2dµ(η)dξ
)1/2

. ‖f‖Lpcr,1.

Thus (2.10) follows. By duality we also get the L2 → Lp′cr,∞ estimate,
and then, by the Marcinkiewicz interpolation theorem,

(2.11) ‖f ∗ µ̂j‖q̃ . 2j(d−α)/2‖f‖p̃
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for (1/p̃, 1/q̃) on the open line segment joining the points (1/pcr, 1/2)
and (1/2, 1/p′cr).

We now repeat Bourgain’s argument above, interpolating the bounds
(2.11) with the estimate (2.6). This gives the bound

(2.12)
∥∥f ∗ µ̂

∥∥
Lq,∞ . ‖f‖Lp,1

for (1/p, 1/q) on an open line segment which is parallel to the diagonal
{x, x}, and has midpoint (1/pcr, 1/p

′
cr).

Using the general Marcinkiewicz interpolation theorem again (on this
line segment) we get

(2.13)
∥∥f ∗ µ̂

∥∥
Lp′cr,r

. ‖f‖Lpcr,r

for all r. Applying this for r = 2, and then applying (2.5) one more
time yields

F : Lpcr,2 → L2(dµ) .

�

2.2. Quasiradial multipliers in M2
p . Some theorems for radial multipli-

ers can be generalized for quasiradial multipliers, which do not possess
any group invariance properties. They are given by

m(ξ) = h(ρ(ξ))

where ρ is a suitable P -homogeneous distance function.

To define this notion let P be a real d× d matrix whose eigenvalues
have positive real part and let tP = exp(P log t). ρ is a P -homogeneous
distance function if

ρ(tP ξ) = tρ(ξ)

for all t > 0, and ρ is continuous in Rd and ρ(ξ) > 0 for ξ 6= 0. In
addition we shall throughout assume that ρ belongs to C∞(Rd \ {0}.
Let

(2.14) Σρ = {ξ : ρ(ξ) = 1}
and let σ be the surface measure on Σρ. It will be convenient to use
generalized polar coordinates ξ = sP ξ′ with ρ(ξ) = s, ξ′ ∈ Σρ; then

∫
g(x)dx =

∫ ∞

0

∫

Σρ

g(sξ′)
dσ(ξ′)

〈Pξ′, n(ξ′)〉s
ν−1ds

where n(ξ′) is the outer normal vector at ξ′ ∈ Σρ and

ν = trace(P ).
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Euler’s homogeneity relation in this setting becomes ρ(ξ) = 〈Pξ,∇ρ(ξ)〉
so that 〈Pξ′, n(ξ′)〉 is bounded above and below on Σρ.

We now discuss a simple characterization of quasiradial M2
p multi-

pliers in the case that the Fourier dimension of Σρ is positive. Let σ
be surface measure on Σρ. We assume

(2.15) sup
ξ∈Rd

|ξ|β/2|σ̂(ξ)| <∞

for some β > 0. As Σρ is a hypersurface we can apply Theorem 2.1
with α = d− 1 and get

(2.16)
(∫

Σρ

|ĝ(ξ′)|2dσ(ξ′)
)1/2

. ‖f‖Lp(Rd), 1 ≤ p ≤ 2β + 4

β + 4

(cf. [20]). For example, (2.15) holds with β/2 = (d − 1)/m if Σρ is
convex and all tangent lines to Σρ have contact order of at least m with
Σρ (see e.g. [8]). One version of the following observation was stated
in [18] although it had been known as a ”folk result” for quite some
time.

Theorem 2.2. Suppose that (2.15) holds and 1 < p ≤ 2β+4
β+4

. Then the
operator

f 7→ F−1[h(| · |)f̂ ]
extends to a bounded operator from Lp(Rd) to L2(Rd) if and only if

(2.17) sup
t>0

tν(
1
p
− 1

2
)
(∫ 2t

t

|h(ρ)|2dρ
ρ

)1/2

<∞.

Proof. If h is supported in (1, 4) then h ◦ ρ ∈ M2
p immediately implies

that h◦ ρ ∈ L2(Rd), by testing the operator on suitable Schwartz func-
tions. Thus, by polar coordinates, h ∈ L2. By scaling, ‖m(tP ·)‖M2

p
=

tν(1/p−1/2)‖m‖M2
p
and the necessity of the condition (2.17) follows.

For the sufficiency assume first that ht is supported in [t, 4t]. Then
using polar coordinates and the restriction theorem (2.16) wee see that

‖ht◦ρ f̂ ]‖2 .
(∫ 2t

t

|ht(r)|2
∫

Σρ

|f̂(rξ′)|2 dσ(ξ′)

〈Pξ′, n(ξ′)〉r
ν−1dr

)1/2

.
(∫ 2t

t

|ht(r)|2‖ 1
rν
f( ·

r
)‖2prν−1dr

)1
2

= ‖f‖p
(∫ 2t

t

|ht(r)|2r2ν(
1
p
− 1

2
)dr

r

) 1
2

.
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Now, dropping the support assumption we decompose h =
∑

k∈Z h2k
where h2k is supported in [2k, 2k+1]. Let

A = sup
k

2kν(
1
p
− 1

2
)
( ∫ 2k+1

2k−1

|h(ρ)|2dρ
ρ

)1/2

.

Let ϕ ∈ C∞ supported in (1/4, 4) so that ϕ(s) = 1 on [1/2, 2]. Define

Lk by L̂kf(ξ) = ϕ(2−kρ(ξ))f̂(ξ). By Littlewood-Paley theory (adapted
to the geometry determined by P ) we know that the operator f 7→
{Lkf}k∈Z is bounded from Lp to Lp(ℓ2). The above shows

‖F−1[h(ρ(·))f̂ ]‖22 .
∑

k

‖h2k ◦ρ f̂ ]‖22

. A2
∑

k

‖Lkf‖2p . A2
∥∥∥
(∑

k

|Lkf |2
)1/2∥∥∥

2

p
. A2‖f‖2p,

�

Remark 2.3. It can be shown that for ρ(ξ) = |ξ|a, and the operator
acting on radial functions only we have the same inequality in a larger
range, namely Lp

rad
→ L2 boundedness for 1 < p < 2d

d+1
. Moreover at

the endpoint p0 = 2d/(d + 1), we have Lp0,1
rad

→ L2 boundedness and
Lp0,1 cannot be replaced with Lp0,q

rad
for q > 1. See [18].

3. An FLq result

In this section h is assumed to be supported in a compact subinterval
J of (0,∞). In order for h ◦ ρ to belong to M q

p it is necessary for

F−1[h ◦ ρ] to belong to Lq; this is immediate because on can test the
convolution operator on Schwartz-functions whose Fourier transform is
equal to one on the support of h ◦ ρ. It is sometimes useful to express
this condition in terms of a condition on the inverse Fourier transform
of h (considered as a function on (−∞,∞)), i.e.

(3.1) κ(r) =

∫
h(ρ)e−iρrdρ .

Such a characterization is possible in the isotropic case, when ρ is the
Minkowski functional of an open set Ω with smooth boundary, starlike
with respect to the origin in its interior, so that ρ is homogeneous of
degree one and Σρ is the boundary of Ω. The following result can be
found for ρ(ξ) = |ξ| in [18]. The proof for general ρ is taken from our
joint paper with Lee [32].
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Theorem 3.1. Let 1 ≤ q ≤ 2, Ω as above, let ρ be the Minkowski
functional of Ω and let J be a compact subinterval of (0,∞). Then for
h with support in J ,

(3.2)
∥∥F−1[h ◦ ρ]

∥∥
Lq(Rd)

≈
( ∫

|κ(r)|q(1 + |r|)(d−1)(1− q
2
)dr

)1/q

.

The implicit constant depends on J .

Proof. Let χ ∈ S(R) so that χ is compactly supported in (0,∞) and
χ(s) = 1 on supp(h). The inequality ”.” in (3.2) follows by showing

(3.3)
∥∥∥F−1

[
χ(ρ(·))

∫
κ(r)eirρ(·)dt

]∥∥∥
Lq(Rd)

.
(∫

|κ(r)|q(1 + |r|)(d−1)(1− q
2
)dr

)1/q

for the cases q = 2 and q = 1, and using analytic interpolation.

For q = 2 we have

(2π)d
∥∥∥F−1[χ(ρ(·))

∫
κ(r)eirρ(·)dr]

∥∥∥
2

L2(Rd)

=

∫ ∣∣∣χ(ρ(ξ))
∫
κ(r)eirρ(ξ)dr

∣∣∣
2

dξ

= c

∫ ∣∣∣χ(ρ)
∫
κ(r)eirρdr

∣∣∣
2

ρd−1dρ

.

∫
|κ(r)|2dr

where we have first used Plancherel in Rd, applied generalized polar
coordinates, and then used Plancherel on the real line.

In order to prove (3.3) for q = 1 we use the fact

(3.4)
∥∥∥F−1[χ(ρ(·))eirρ(·)]

∥∥∥
L1(Rd)

. (1 + |r|) d−1
2 .

This is a rescaled version of an inequality in [44]; the assumption that
ρ is homogeneous of degree one is crucial here. (3.4) and Minkowski’s
integral inequality immediately give

∥∥∥F−1[χ(ρ(·))
∫
κ(r)eirρ(·)dt]

∥∥∥
1
.

∫
|κ(r)|(1 + |r|) d−1

2 dr

which is (3.3) for q = 1.

We now show the converse inequality

(3.5)
(∫

|κ(r)|q(1 + |r|)(d−1)(1−q/2)dr
)1/q

. ‖F−1[h ◦ ρ]‖Lq(Rd) .
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for h smooth. This a priori assumption implies that the left hand side
in (3.5) is finite; it is easy to remove by an approximation argument.

Let ξ0 ∈ Σρ be a point where the Gaussian curvature does not vanish
(e.g. a point where |ξ| is maximal on Σρ). Let U be a small neighbor-
hood of ξ0 on which the Gauss map is injective and the curvature is
bounded below. Let γ be homogeneous of degree zero, γ(ξ0) 6= 0 and
supported on the closure of the cone generated by U . Then

∥∥F−1[γ h◦ρ]
∥∥
Lq .

∥∥F−1[h◦ρ]
∥∥
Lq .

Use polar coordinates (with respect to ρ) to write

(3.6) (2π)dF−1[γ h◦ρ](x) =
∫ ∞

0

h(ρ)ρd−1

∫

Σρ

γ(ξ′)eiρ〈ξ
′,x〉 dσ(ξ

′)

|∇ρ(ξ′)| dρ .

Let n(ξ0) the outer normal at ξ0, let Γ = {x ∈ Rd :
∣∣ x
|x| − n(ξ0)

∣∣ ≤ ε},
with ε small and let, for large R ≫ 1, ΓR = {x ∈ Γ : |x| ≥ R}. We may
assume that for each x ∈ Γ there is a unique ξ = Ξ(x) ∈ Σρ, so that
γ(Ξ(x)) 6= 0 and so that x is normal to Σρ at Ξ(x). Clearly x 7→ Ξ(x) is
homogeneous of degree zero on Γ. By the method of stationary phase
we have for x ∈ ΓR

(3.7) F−1[γh(ρ(·))](x) = I0(x) +

N∑

j=1

IIj(x) + III(x)

where

I0(x) = c

∫ ∞

0

h(ρ)ρd−1eiρ〈Ξ(x),x〉dρ
γ(Ξ(x))|∇ρ(Ξ(x))|−1

(ρ〈Ξ(x), x〉) d−1
2 |K(Ξ(x))|1/2

where K(Ξ(x)) is the Gaussian curvature at Ξ(x) and |c| = (2π)−d.
There are similar formulas for the higher order terms IIj(x), with the

main term (ρ〈Ξ(x), x〉)− d−1
2 replaced by (ρ〈Ξ(x), x〉)− d−1

2
−j . Finally

|III(x)| .N ‖h‖1|x|−N , x ∈ ΓR .

Let hj(ρ) = h(ρ)ρ
d−1
2

−j and let κj = F−1
R

[hj ], then

|I0(x)| ≈
∣∣∣κ0(〈Ξ(x), x〉)
〈Ξ(x), x〉 d−1

2

∣∣∣ , x ∈ ΓR.

We also have

|x| ≈ 〈Ξ(x), x〉, x ∈ Γ,
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which is a consequence of ρ(ξ) = 〈ξ,∇ρ(ξ)〉 (Euler’s homogeneity rela-
tion) and the positivity of ρ on Σρ. It follows

(3.8) ‖I0‖Lq(ΓR) &
(∫ ∞

C0R

|κ0(r)|q(1 + |r|)(d−1)(1−q/2)dr
)1/q

for some C0 > 1. Similarly

(3.9) ‖IIj‖Lq(ΓR) . R−j
( ∫ ∞

0

|κj(r)|q(1 + |r|)(d−1)(1−q/2)dr
)1/q

.

We will need to use the straightforward bound

(3.10)
(∫ ∞

0

|ζ ∗ g(r)|q(1 + |r|)adr
)1/q

.
(∫ ∞

0

|g(r)|q(1 + |r|)adr
)1/q

whenever ζ ∈ S(R). Since κj = ζj ∗ κ0 this shows that we can replace
κj in (3.9) by κ0.

There are also the trivial inequalities

‖III‖Lq(ΓR) . R−1‖h‖1
and

‖h‖1 . ‖h◦ρ‖Lq′(Rd) . ‖F−1[h◦ρ]‖Lq(Rd) .

Thus

(3.11) ‖III‖Lq(ΓR) . R−1‖F−1[h◦ρ]‖Lq(Rd).

Moreover, we estimate crudely
(3.12)
(∫ C0R

0

|κ(r)|q(1 + |r|)(d−1)(1−q/2)dr
)1/q

. Rd/q‖κ0‖∞ . Rd/q‖h‖1 .

We now combine the estimates and get
(∫

|κ0(r)|2(1 + |r|)(d−1)(1−q/2)dr
)1/q

. ‖I0‖Lq(ΓR) +Rd/q‖F−1[h◦ρ]‖Lq(Rd)

. Rd/q‖F−1[h◦ρ]‖Lq(Rd) +R−1
∑

j=1

‖IIj‖Lq(Rd)(3.13)

here we have used (3.7), (3.11)) for the second inequality, and (3.8),
(3.12)) for the third. To estimate the second term in (3.13) we use
(3.9) and then, using (3.10) replace κj with κ0 to get

‖IIj‖Lq(ΓR) . R−1
(∫ ∞

0

|κ0(r)|q(1 + |r|)(d−1)(1−q/2)dr
)1/q

.
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Thus, choosing R sufficiently large (and using the finiteness of the right
hand side of the last display) we get

(∫
|κ0(r)|2(1 + |r|)(d−1)(1−q/2)dr

)1/q

. ‖F−1[h◦ρ]‖Lq(Rd) .

Finally observe that κ = κ0∗ζ0 for some Schwartz function ζ0 and thus,
by (3.10) we may replace κ0 by κ. This finishes the proof of (3.5). �

Remark. An application of the Hausdorff-Young inequality recovers
necessary comditions in [19],[42], namely for h supported in a compact
interval J ⊂ (0,∞)

(3.14) ‖h‖
Bq′

(d−1)( 1q−
1
2 ,q

.
J
‖F−1[h◦ρ]‖Lq(Rd) .

In [42] inequality (3.14) was proved for more general P -homogeneous
distance functions ρ, but we don’t have a simple analogue of Theorem
3.1 in this case.

4. Radial Mp multipliers acting on radial functions

Let g be a radial Schwartz-function, g = g0(|x|) then the Fourier
transform of g is given by ĝ(ξ) = Bdg0(ρ) where Bd denotes the Fourier-
Bessel transform (or modified Hankel transform) of g0. It is given by

(4.1) Bdf(ρ) =

∫ ∞

0

f(s)J(sρ)sd−1ds

where

(4.2) J(ρ) = ρ−
d−2
2 Jd−2

2

(ρ)

and Jα denotes the standard Bessel function.

The convolution with a radial kernel maps radial functions to radial
functions. Let h(|ξ|) be a radial multiplier and g = g0(| · |) Then
(4.3) F−1[h(| · |)ĝ](x) = cBd[hBdg0](|x|) .
We denote by Lp

rad
the space of radial Lp functions. The following

characterization of Lp
rad

boundedness was proved in joint work with G.
Garrigós [18]. Let φ be a nontrivial bump function which is compactly
supported in (0,∞).

Theorem 4.1. Let 1 < p < 2d
d+1

. Define κt(τ) = F−1[φh(t·)](τ) . Then

‖F−1[h(| · |)f̂ ]‖Lp
rad

. ‖f‖Lp
rad
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for all radial Schwartz functions holds if and only if the condition

(4.4) sup
t>0

(∫
|κt(τ)|p(1 + |τ |)(d−1)(1−p/2)dτ

)1/p

<∞

is satisfied.

The necessity is easily checked by testing the operator on functions
of the form td/pη(t·) where η is a suitable Schwartz function. For the
full proof of Theorem 4.1 we refer to [18]. Here we consider only the
special case where h is compactly supported on a compact subinterval
J of (0,∞). In this case the condition (4.4) reduces to the finiteness of
‖F−1[h(|·|)]‖p and thus, by Theorem 3.1, we need to prove the estimate

(4.5)
∥∥Bd[hBdg]

∥∥
Lp(rd−1dr

.
(∫ ∞

−∞
|ĥ(τ)|p(1 + |τ |)(d−1)(1−p/2)dτ

)1/p

‖g‖Lp(rd−1dr) .

Proof of (4.5). Here we give the simple idea for the proof of this special
case. We need to use the standard asymptotics for Bessel functions (see
[14], 7.13.1(3)), namely for |x| ≥ 1,

(4.6) J(x) =
M∑

ν=0

cν,d cos(x− d−1
4
π)x−2ν− d−1

2

+
M∑

ν=0

c̃ν,d sin(x− d−1
4
π)x−2ν− d+1

2 + x−M ẼM,d(x)

with c0,d = (2/π)1/2, and the derivatives of ẼM,d are bounded.

Note that

(4.7) Bd[hBdg](r) =

∫
K(r, s)sd−1g(s)ds

where

(4.8) K(r, s) =

∫ ∞

0

h(ρ)J(ρr)J(ρs)ρd−1dρ.

Using the above asymptotic expansion in this integral, for both J(ρr)
and J(ρs) one derives the following pointwise bound

(4.9) |K(r, s)| .
∑

(±,±)

(1 + r)−
d−1
2 (1 + s)−

d−1
2

∫ |κ(±r ± s− u)|
(1 + |u|)N du.
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where κ = F−1
R

[h]. If we incorporate the weights into the operator, set
f(s) = s(d−1)/pg(s), and use (4.9), then (4.5) reduces to

(4.10)
(∫ [ |r| d−1

p

(1 + |r|) d−1
2

∫∫ |s|
d−1
p′

(1 + |s|) d−1
2

|κ(±r ± s− u)|
(1 + |u|)N |f(s)| dsdu

]p
dr
)1/p

. ‖κ‖Lp((1+|r|)(d−1)(1−p/2)dr)‖f‖Lp(dr) .

Let

K(r, s) =
(1 + |r|
1 + |s|

)(d−1)( 1
p
− 1

2
)

|κ(±r ± s)|

By an application of Minkowski’s inequality and a straightforward es-
timate we see that (4.10) follows from

(4.11)
(∫ ∣∣∣

∫
K(r, s)f(s)ds

∣∣∣
p

dr
)1/p

. ‖κ‖Lp((1+|τ |)(d−1)(1−p/2)dτ)‖f‖Lp(ds) .

We split the kernel into K1(r, s) = K(r, s)χ|s|≤|r|/2 and K2(r, s) =
K(r, s)χ|s|≥|r|/2. The main contribution comes from the first kernel
and we get
(∫ ∣∣∣

∫
K1(r, s)f(s)ds

∣∣∣
p

dr
)1/p

.

∫ |f(s)|
(1 + |s|)(d−1)( 1

p
− 1

2
)

(∫

|r|≥2|s|
(1 + |r|)(d−1)(1− p

2
)|κ(±r ± s)|pdr

)1/p

ds

.

∫ |f(s)|
(1 + |s|)(d−1)( 1

p
− 1

2
)
ds

(∫
(1 + |r|)(d−1)(1− p

2
)|κ(r)|pdr

)1/p

.

For p < 2d
d+1

Hölder’s inequality yields
∫

(1 + |s|)−(d−1)( 1
2
− 1

p
)|f(s)|ds . ‖f‖p

and we get the analogue of (4.11) for the kernel K1.

For the contribution with |s| ≥ |r|/2 we can drop the term

(1 + |r|
1 + |s|

)(d−1)(1/p−1/2)

. 1

and estimate
(∫ ∣∣∣

∫
K2(r, s)f(s)ds

∣∣∣
p

dr
)1/p

. ‖κ‖1‖f‖p .
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Since by Hölder’s inequality and p < 2d
d+1

‖κ‖1 .
(∫

(1 + |r|)(d−1)(1− p
2
)|κ(r)|pdr

)1/p

,

we get the analogue of (4.11) for the kernel K2. This finishes the proof
of (4.5). �

Open problem: Is there an effective characterization of Lp
rad

→ Lp
rad

boundedness in the range 2d
d+1

≤ p < 2?

5. Radial Fourier multipliers with compact support

We now give the proof of the characterization of radial multipliers
with compact support away from the origin, which was obtained in the
paper with Heo and Nazarov [23].

Theorem 5.1. Let d ≥ 4, 1 < p < pd :=
2d−2
d+1

, and let m be radial,

m = h(| · |)
with h supported in (1

2
, 2). Let κ as in (3.1), i.e. κ(r) = (2π)F−1[h](r).

The following are equivalent:

(i) m ∈Mp(Rd)

(ii)
( ∫∞

−∞ |κ(r)|p(1 + |r|)(d−1)(1−p/2)dr
)1/p

<∞

(iii) F−1[m] ∈ Lp(Rd).

For the equivalence of (ii) and (iii) see §3. Clearly (i) implies (iii), in
view of the compact support of m. In this section we prove that (iii)
implies (i).

Let φ0 be a radial Schwartz function, compactly supported in {|x| ≤
1
2
} such that φ̂0(ξ) > 0 on {ξ : 1/2 ≤ |ξ| ≤ 2}. Take ψ0 = ∆2Mφ0 for
M > 5d. Then ψ0 is a radial Schwartz function, compactly supported

in {|x| ≤ 1
2
} such that ψ̂0(ξ) > 0 on {ξ : 1/2 ≤ |ξ| ≤ 2} and such that

∫
ψ0(x)P (x)dx = 0

for all polynomials of degree ≤ 4M . Let

ψ = ψ0 ∗ ψ0.
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Let η be a radial Schwartz function such that η̂(ξ) = [ψ̂(ξ)]−1 for

1/2 ≤ |ξ| ≤ 2. Then h(|ξ|)ψ̂(ξ)η̂(ξ) = m(ξ) and thus

F−1[m] = ψ ∗K = ψ0 ∗ ψ0 ∗K

where K = η ∗ F−1[m]. Note that K is radial and K̂ is compactly
supported in {ξ : 1/2 ≤ |ξ| ≤ 2}. Clearly

‖K‖p . ‖F−1[m]‖p .
Thus we need to show

(5.1) ‖ψ ∗K ∗ f‖p . ‖K‖p‖f‖p.
Let K(r) be defined on (0,∞) so that K(|x|) = K(x).

If g ∈ S we have, by polar coordinates,
∫
K(x)g(x)dx =

∫ ∞

0

K(r)rd−1

∫

Sd−1

g(rx′)dσ dr

and thus

(5.2) K =

∫ ∞

0

K(r)σrdr

where σr is the surface measure on the sphere of radius r and (5.2) is
understood in the sense of distributions. Note that

‖σr‖M = O(rd−1).

Also 〈σr, g〉 = rd−1〈σ, g(r·)〉 , i.e. σr = r−1σ(r−1·) .
Lemma 5.2. We have (

|σ̂r(ξ)| ≤
rd−1

(1 + |ξ|r) d−1
2

and

(5.3) ‖ψ̂0 ∗ σr‖∞ . (1 + r)
d−1
2

Proof. The first formula follows from stationary phase or the explicit
formula ([48])

(5.4) σ̂1(|ξ|) = J(|ξ|),
with J as in (4.2)

Now (5.3) follows because ψ̂ vanishes at the origin to order 20d. �
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The contribution of the integral in (5.2) for r ≤ A is trivial for our
purposes since

∥∥∥
∫ A

0

K(r)σrdr
∥∥∥
1
.

∫ A

0

|K(r)|rd−1dr

. Ad/p′
(∫ A

0

|K(r)|prd−1dr
)1/p

.

Let f ∈ Lp(Rd). We need to prove

(5.5)
∥∥∥
∫ ∞

2

K(r)

∫
ψ ∗ σr(x− y)f(y)dy dr

∥∥∥
p

.
(∫ ∞

2

|K(r)|prd−1dr
)1/p

‖f‖p.

Let

(5.6) Fy,r(x) := ψ ∗ σr(x− y).

We replace the tensor product function f(y)K(r) with a more general
function g in the Lebesgue space Lp(Rd × (0,∞); dy rd−1dr). We will
then prove the more general inequality

(5.7)
∥∥∥
∫ ∞

2

∫
Fy,r(x)g(y, r)dy dr

∥∥∥
p
.

(∫ ∞

2

∫
|g(y, r)|pdy rd−1dr

)1/p

It is convenient for notation to discretize the above inequality. This
is natural in view of the compact support of the Fourier transform of K
and (w.l.o.g.) the Fourier transform of f . For u = (u′, ud+1) ∈ [0, 1]d×
[0, 1] let Zu be the half-lattice consisting of those (y, r) = (y1, . . . , yd, r)
such that yi = zi + ui for some integer zi and r = n + ud+1 for some
integer n ≥ 2. It suffices to prove the inequality

(5.8)
∥∥∥

∑

(y,r)∈Zu

Fy,r(x)g(y, r)
∥∥∥
p
.

( ∑

(y,r)∈Zu

|g(y, r)|p rd−1
)1/p

with a bound uniform in u ∈ [0, 1]d+1. Henceforth it is assumed that
all (y, r) sums are taken over Zu. Later we shall also use the notation

(5.9) Zk,u = {(y, r) ∈ Zu : 2k ≤ r < 2k+1} .

Inequality (5.7) (with the r-integration over [1,∞)) is an immediate
consequence of (5.8), by averaging and Hölder’s inequality. Indeed, we
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have
∥∥∥
∫ ∞

1

∫
ψ ∗ σr(x− y)g(y, r)dy dr

∥∥∥
p

.
∥∥∥
∫

[0,1]d+1

∑

(y,r)∈Zu

ψ ∗ σr(x− y)g(y, r)
∥∥∥
p
du

.

∫

[0,1]d+1

∥∥∥
∑

(y,r)∈Zu

ψ ∗ σr(x− y)g(y, r)
∥∥∥
p
du

.
(∫

[0,1]d+1

∥∥∥
∑

(y,r)∈Zu

Fy,r(x)g(y, r)
∥∥∥
p

p
du

)1/p

and, once we prove (5.8), the right hand side of the previous display is
bounded by a constant times
(∫

[0,1]d+1

∑

(y,r)∈Zu

|g(y, r)|p rd−1 du
)1/p

=
(∫ ∞

1

∫
|g(y, r)|pdy rd−1dr

)1/p

.

Support properties. Recall that the support of ψ is in the unit ball
and thus

(5.10) supp(Fy,r) ⊂ {x :
∣∣|x− y| − r

∣∣ ≤ 1},
which has measure O(rd−1) if r ≥ 2. Thus if E is a subset of Zu, Zk,u

as in (5.9), then we have the trivial consequence

(5.11) meas
(
supp

(∑

k

∑

(y,r)∈E∩Zk,u

Fy,r

))
.

∑

k

2k(d−1)#(E ∩ Zk,u) .

This estimate may be improved if the set E ⊂ Zk,u is concentrated on a
ball of radius R0 ∈ (1, 2k). Observe that the cardinality of E is always
O(Rd+1

0 ) in this case and an improvement over (5.11) happens if this
cardinality is substantially larger than R0.

Lemma 5.3. Let 1 ≤ R0 ≤ 2k, Ek ⊂ Zk,u and suppose that Ek is
contained in a ball B0 of radius R0. Then

(5.12) meas
(
supp

( ∑

(y,r)∈Ek

|Fy,r|
))

. 2k(d−1)R0 .

Proof. If (y0, r0) is the center of B0 and if Fy,r(x) 6= 0 then
∣∣|x−y|−r

∣∣ ≤
1 and consequently

∣∣|x− y0| − r0
∣∣ ≤

∣∣|x− y| − r
∣∣+ |y − y0|+ |r − r0| ≤ 1 + 2R0.
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Thus

supp
( ∑

(y,r)∈Ek

Fy,r

)
⊂ {(y, r) ∈ Zk,u :

∣∣|x− y0| − r0
∣∣ ≤ 2R0 + 1}

and the measure of this set is O(2k(d−1)R0). �

A weak orthogonality property. Inequality (5.8) trivially holds for
p = 1 since ‖Fy,r‖1 = O(rd−1). We also know that ‖Fy,r‖22 = O(rd−1)
and thus if the functions Fy,r were orthogonal, or almost orthogonal in
a strong sense then one would get the inequality for p = 2. However,
this would imply that we get L2 boundedness for convolution opera-
tors for which the compactly supported Fourier multiplier is merely in
L2, but of course boundedness of the Fourier multiplier is a necessary
and sufficient condition for L2 boundedness. Consequently the Fy,r are
not “almost orthogonal” enough. Nevertheless there is a weak orthog-
onality which will be crucial in our estimates. It is expressed in the
following

Lemma 5.4.

(5.13)
∣∣〈Fy,r, Fy′,r′

〉∣∣ . (rr′)
d−1
2

(1 + |y − y′|+ |r − r′|) d−1
2

.

Proof. By Parsevals’s identity
〈
Fy,r, Fy′,r′

〉
= (2π)−d

〈
F̂y,r, F̂y′,r′

〉

Recall that σ̂1(|ξ|) = J(|ξ|) (cf. (5.4)) and thus, with ψ̂(ξ) = β(|ξ|), we
have

(2π)d〈F̂y,r, F̂y′,r′〉

=

∫
σ̂r(ξ)σ̂r′(ξ)|ψ̂(ξ)|2ei〈y

′−y,ξ〉dξ

= (rr′)d−1

∫
|β(ρ)|2J(rρ)J(r′ρ)

∫

Sd−1

eiρ〈y
′−y,ξ′〉dσ(ξ′) ρd−1dρ

= (rr′)d−1

∫
|β(ρ)|2ρd−1

J(rρ)J(r′ρ)J(ρ|y − y′|) dρ

Now |J(s)| . (1 + |s|)− d−1
2 and if we take into account that |β(s)| .

|s|20d for |s| ≤ 1 and |β(s)| . |s|−N for |s| ≥ 1, we obtain

∣∣〈Fy,r, Fy′,r′
〉∣∣ . (rr′)

d−1
2

(1 + |y − y′|) d−1
2

.
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This gives the asserted bound when |r− r′| ≤ C(1+ |y− y′|). But from

supp(Fy,r) ⊂ {x :
∣∣|x− y| − r| ≤ 1},

supp(Fy′,r′) ⊂ {x :
∣∣|x− y′| − r′| ≤ 1}

we see that for |r− r′| ≫ 1+ |y− y′|, the supports of Fy,r and Fy′,r′ are
disjoint. Hence 〈Fy,r, Fy′,r′〉 = 0 in this case. �

We note that one can prove a finer estimate
(5.14)

|〈Fy,r, Fy′,r′〉| ≤ CN(rr
′)

d−1
2 (1+ |y−y′|)− d−1

2

∑

±,±

(
1+

∣∣r±r′±|y−y′|
∣∣)−N

if one uses the oscillations of the Bessel functions (as in (4.6). We will
not have to use (5.14).

Reduction to a restricted weak type inequality. We need to

prove the inequality (5.8) for p in the open range (1, 2(d−1)
d+1

). Consider

the operator T acting on functions {g(y, r)} on the lattice Zu, defined
by

T g(x) =
∑

(y,r)

Fy,r(x) g(y, r) .

By the generalized Marcinkiewicz interpolation theorem it suffices to
prove that T maps the weighted Lorentz space ℓp,1(Zu, r

d−1) to Lp,∞(Rd).
For k = 1, 2, . . . let

(5.15) Ek ⊂ Zk,u

and let cy,r be constants satisfying

(5.16) sup
y,r

|cy,r| ≤ 1 .

This ℓp,1(Zu, r
d−1) → Lp,∞(Rd) bound follows if we can show the re-

stricted weak type inequality
(5.17)

meas
({
x ∈ R

d :
∣∣∣
∑

k

∑

(y,r)∈Ek

cy,rFy,r

∣∣∣ > λ
})

. λ−p
∑

k

2k(d−1)#Ek .

We note that (5.17) is true for p = 1, and thus implies (5.17) for p > 1
when λ ≤ 1. Hence in what follows we will assume that λ > 1. We
may also assume that #Ek <∞ for all k.
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Modified Calderón-Zygmund decompositions. The following propo-
sition is motivated by the support estimate in Lemma 5.3. In what
follows λ > 1.

Proposition 5.5. For every k there is finite collection Bk of disjoint
balls so that

(i) Each ball B ∈ Bk has radius rad(B) ≤ 2k and

#(B ∩ Ek) ≥ λp diam(B) .

(ii) For each B ∈ Bk denote by B∗ the ball with same center, and
radius equal to five times the radius of B. Define the sparse set (or low
density set) E sp

k as

E sp
k = Ek \

⋃

B∈Bk

B∗.

Then for every subset D of Zk,u with diameter ≤ 2k+1 we have

#(E sp ∩D) . λp diam(D) .

Proof. This is analogous to the proof of the usual Vitali type covering
lemma. We set B0,k = ∅. If there are no balls of radius at most 2k with
the property that the cardinality of the intersection is at least λp times
the diameter of the ball then we set E sp

k = Ek and properties (i) and
(ii) are satisfied with Bk = B0,k = ∅. Otherwise we choose a maximal
ball B1,k of radius at most 2k such that #(B1,k ∩ Ek) ≥ λp diam(B1,k) .

At stage ℓ we are given a collectionBℓ−1,k = {B1,k, . . . , Bℓ−1,k} of ℓ−1
disjoint balls such that #(Ek∩Bi,k) ≥ λp diam(Bi,k) for i = 1, . . . , ℓ−1
and such that the radii of Bi,k do not increase if i increases. If there
are no balls of radius at most 2k in the complement of ∪ℓ−1

i=1Bi,k such
that the cardinality of the intersection with Ek is at least λp times the
diameter of the ball then we set E sp

k = Ek\∪ℓ−1
i=1B

∗
1,k and the construction

stops. Otherwise choose a maximal ball Bℓ,k of radius at most 2k in the
complement of ∪ℓ−1

i=1Bi,k such that #(Bℓ,k ∩ Ek) ≥ λpdiam(Bℓ,k). Note
that diam(Bℓ,k) ≤ diam(Bi.k) for i = 1, . . . , ℓ− 1 (since otherwise Bℓ,k

would have been selected before). We set Bk,ℓ = {B1,k, . . . , Bℓ,k}.
The construction stops at some stage, after having selected disjoint

balls Bi,k, for i = 1, . . . , Nk. Then we set

Bk := BNk,k = {B1,k, . . . , BNk,k} ,
E sp
k = Ek \ ∪Nk

i=1B
∗
i,k .

If B is any ball satisfying #(B ∩ Ek) ≥ λp diam(B) then B must be
contained in B∗

i,k for at least one of the balls Bi,k in Bk. Hence this ball
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is a subset of the complement of E sp
k . Thus if D is any set of diameter

≤ 2k we get card(E sp ∩D) . λp diam(D). �

We use the construction from Proposition 5.5 to build an exceptional
set.

For each k ∈ N and for each ball B ∈ Bk, with center (yB, rB), we
define the subset of Rd

VB = {x ∈ R
d :

∣∣|x− yB| − rB
∣∣ ≤ 2(diam(B∗) + 1)} .

Observe that for B ∈ Bk,

supp
( ∑

(y,r)∈Ek∩B∗

cy,rFy,r

)
⊂ VB

and thus, if we define

(5.18) V =
⋃

k∈N

⋃

B∈Bk

VB

then

(5.19) supp
(∑

k

∑

(y,r)/∈Esp
k

cy,rFy,r

)
⊂ V .

Proposition 5.6. The Lebesgue measure of V satisfies the estimate

meas(V) . λ−p
∑

k

2k(d−1)card(Ek) .

Proof. Recall that for each B ∈ Bk we have by property (i) in Propo-
sition 5.5,

diam(B) ≤ λ−pcard(Ek ∩B).

Thus

meas(V) .
∑

k

∑

B∈Bk

2k(d−1)diam(B∗)

.
∑

k

∑

B∈Bk

2k(d−1)diam(B)

.
∑

k

∑

B∈Bk

2k(d−1)λ−pcard(Ek ∩B)

. λ−p
∑

k

2k(d−1)#Ek . �
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L
2-estimates. The purpose of this section is to prove

Proposition 5.7. For k = 1, 2, . . . let E sp
k be subsets of Zk,u with the

property that for any ball B of diameter ≤ 2k we have the sparseness
assumption

card(E sp
k ∩ B) . λp(diamB).

Then
∥∥∥
∑

k

∑

(y,r)∈Esp
k

cy,rFy,r

∥∥∥
2

2
. λ

2p
d−1 log(2 + λ)

∑

k

2k(d−1)#E sp
k .

The proof is a combination of three lemmata. We begin with a
straightforward L2 estimate which does not rely on our weak orthogo-
nality argument. Recall that always sup |cy,r| ≤ 1.

Lemma 5.8. Let 1 ≤ L ≤ 2k and I be a subinterval of [2k, 2k+1] of
length L. Let EI be a subset of Zk,u such that for all (y, r) ∈ EI we have
r ∈ I. Then ∥∥∥

∑

(y,r)∈EI

cy,rFy,r

∥∥∥
2

2
. L2k(d−1)#EI .

Proof. We have
∥∥∥
∑

y,r

cy,rFy,r

∥∥∥
2

2
=

∥∥∥ψ0 ∗ σ̂r ∗
∑

r∈I

∑

y:(y,r)∈EI

cy,rψ0(· − y)
∥∥∥
2

2

and, by the Cauchy-Schwarz inequality, this is estimated by a constant
times

L
∑

r∈I

∥∥∥ψ0 ∗ σ̂r ∗
∑

y:(y,r)∈EI

cy,rψ0(· − y)
∥∥∥
2

2

. L
∑

r∈I
rd−1

∥∥∥
∑

y:(y,r)∈EI

cy,rψ0(· − y)
∥∥∥
2

2

. L
∑

r∈I
rd−1

∑

y:(y,r)∈EI

‖ψ0(· − y)‖22

. L
∑

r∈I
rd−1#{y : (y, r) ∈ EI}

where we have of course used that the y and r’s are 1-separated. The
last displayed quantity is bounded by L2k(d−1)#(EI). �
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We now let λ > 1 and prove an L2 estimate for the set E sp constructed
in the previous section. We thus assume that every ball of radius ≤ 2k

contains no more than λp diam(B) points in E sp
k .

Lemma 5.9. Let 1 ≤ L ≤ 2k and let I be a collection of disjoint
subintervals of [2k−1, 2k+2] which are of length L. Let

Ek,I = {(y, r) ∈ E sp
k : r ∈ I}.

Then
∥∥∥
∑

I∈I

∑

(y,r)∈Ek,I

cy,rFy,r

∥∥∥
2

2
.

(
L+ λpL−ℓ d−3

2

)
2k(d−1)#E sp.

Proof. We may assume that the intervals are 10L-separated (after split-
ting the collection I into eleven subcollections with this property). Let

Gk,I =
∑

I∈I

∑

(y,r)∈Esp
k,I

cy,rFy,r.

Then ∥∥∥
∑

I

Gk,I

∥∥∥
2

2
.

∑

I

∥∥Gk,I

∥∥2

2
+

∑

I′ 6=I

∣∣〈Gk,I′, Gk,I〉
∣∣.

By Lemma 5.8,

(5.20)
∑

I

∥∥Gk,I

∥∥2

2
. L

∑

I

2k(d−1)#(Ek,I) . L2k(d−1)#(E sp
k ) .

We claim that

(5.21)
∑

I′ 6=I

∣∣〈Gk,I , Gk,I′〉
∣∣ . λpL− d−3

2 2k(d−1)#Ek.

Let (y, r) ∈ Ek,I. Then by Lemma 5.2, part (i),
∑

I′ 6=I

∑

(y′,r′)∈Ek,I′

∣∣〈Fy,r, Fy′,r′〉
∣∣

. 2k(d−1)
∑

(y′,r′)∈Esp
k

L≤|(y′,r′)−(y,r)|≤2k+3

|(y′, r′)− (y, r)|− d−1
2

. 2k(d−1)
∑

2ℓ≥L/2

2−ℓ d−1
2 (λp2ℓ)

. 2k(d−1)λpL− d−3
2 .
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where we have used that each ball of diameter 2ℓ contains no more than
2ℓλp points in E sp

k . We also used d > 3 to sum the geometric series.
Now we sum in (y, r) and get

∑

I′ 6=I

∣∣〈Gk,I, Gk,I′〉
∣∣

≤
∑

I

∑

(y,r)∈Ek,I

∑

I′ 6=I

∑

(y′,r′)∈Ek,I′

∣∣〈Fy,r, Fy′,r′〉
∣∣

.
∑

I

∑

(y,r)∈Ek,I

2k(d−1)λpL−ℓ d−3
2

. λpL−ℓ d−3
2 2k(d−1)#E sp

k .

This proves (5.21). The lemma follows if we combine (5.20) and (5.21).
�

Corollary 5.10.

∥∥∥
∑

(y,r)∈Esp
k

cy,rFy,r

∥∥∥
2

2
. λ

2p
d−12k(d−1)#E sp

k .

Proof. If 2k ≤ λp
2

d−1 this follows from Lemma 5.8. If 2k > λp
2

d−1 this

follows from Lemma 5.9 if we choose L = λ
2

d−1 . �

Finally we show some almost orthogonality for the sums in which we
allow to vary k.

Lemma 5.11.
∥∥∥
∑

k

∑

(y,r)∈Esp
k

cy,rFy,r

∥∥∥
2

2
. λ

2p
d−1 log(2 + λ)

∑

k

2k(d−1)#E sp.

Proof. Let N(λ) be the smallest integer larger than 10 log2(2+λ
p). Let

Gk =
∑

(y,r)∈Esp
k

cy,rFy,r.

We write

(5.22)
∥∥∥
∑

k

Gk

∥∥∥
2

2
≤ 2

∥∥∥
∑

k≤N(λ)

Gk

∥∥∥
2

2
+
∥∥∥

∑

k>N(λ)

Gk

∥∥∥
2

2
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and estimate
∥∥∥

∑

k≤N(λ)

Gk

∥∥∥
2

2
. N(λ)

∑

k≤N(λ)

∥∥Gk

∥∥2

2

. λ
2p
d−1 log(2 + λ)

∑

k≤N(λ)

2k(d−1)#E sp,(5.23)

by Lemma 5.9.

Now, in order to estimate the L2 norm of
∑

k>N(λ)Gk we may assume

the sum in k is taken over a 10-separed subsets of integers ≥ N(λ) (just
split the original sum in eleven different sums with this property). We
then have

(5.24)
∥∥∥

∑

k>N(λ)

Gk

∥∥∥
2

2
≤

∑

k>N(λ)

‖Gk‖22 + 2
∑

k>k′>N(λ)

∣∣〈Gk, Gk′〉
∣∣ .

Again, by Lemma 5.9,

(5.25)
∑

k>N(λ)

‖Gk‖22 . λ
2p
d−1

∑

k>N(λ)

2k(d−1)#E sp .

To estimate the second term in (5.24) we fix

(y, r) ∈ E sp
k .

Let k′ < k−10 and let (y′, r′) ∈ E sp
k′ . Then Fy′,r′ is supported on a ball of

radius r′+1 centered at y′ and Fy,r is supported on the 1 neighborhood
of the sphere of radius r centered at y. This means 〈Fy,r, Fy′,r′〉 can be
different from zero only if

r − 2k
′+3 ≤ |y − y′| ≤ r + 2k

′+3.

The set of (y′, r′) ∈ Zu satisfying 2k
′ ≤ r ≤ 2k

′+1 and satisfying the
displayed inequality can be covered with O(2(k−k′)(d−1)) balls of radius
2k

′

and each of them contains no more than O(λp2k
′

) points of E sp
k′ . For

those points the distance of (y, r) and (y′, r′) is & 2k and therefore, by
Lemma 5.13,

|〈Fy,r, Fy′,r′〉| . (rr′)
d−1
2 2−k d−1

2 . 2k
′ d−1

2 .

Then also
∑

(y′,r′)∈Esp

k′

|〈Fy,r, Fy′,r′〉| . 2(k−k′)(d−1)(λp2k
′

)2k
′ d−1

2 . λp2k(d−1)2−k′ d−3
2 .
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Hence

∑

N(λ)<2k′<2k−10

∑

(y′,r′)∈Esp

k′

|〈Fy,r, Fy′,r′〉|

. λp2k(d−1)
∑

N(λ)<2k′<2k−10

2−k′ d−3
2

. λp2−N(λ)d−3
2 2k(d−1) . 2k(d−1)

since d > 3.

Finally we sum over all (y, r) ∈ E sp
k and get from the last display

∑

k>k′>N(λ)

∣∣〈Gk, Gk′〉
∣∣

.
∑

k>N(λ)

∑

(y,r)∈Esp
k

∑

N(λ)<2k′<2k−10

∑

(y′,r′)∈Esp

k′

|〈Fy,r, Fy′,r′〉|

.
∑

k>N(λ)

∑

(y,r)∈Esp
k

2k(d−1) . 2k(d−1) #E sp
k .(5.26)

If we combine the last estimate with (5.25) we obtain

∥∥∥
∑

k>N(λ)

Gk

∥∥∥
2

2
. λp2k(d−1) #E sp

k .

and this, together with (5.23), proves the lemma. �

Conclusion. We prove the restricted weak type inequality (5.17), for
λ > 1. Let V be as in (5.18). Using (5.19) we get

meas
(
{x ∈ R

d :
∣∣∣
∑

k

∑

(y,r)∈Ek

cy,rFy,r

∣∣∣ > λ}
)

. meas(V) + meas
(
{x ∈ R

d :
∣∣∣
∑

k

∑

(y,r)∈Esp
k

cy,rFy,r

∣∣∣ > λ}
)

. meas(V) + λ−2
∥∥∥
∑

k

∑

(y,r)∈Esp
k

cy,rFy,r

∥∥∥
2

2
,

by Tshebyshev’s inequality.
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By Proposition 5.6 and Proposition 5.7 we get

meas
(
{x ∈ R

d :
∣∣∣
∑

k

∑

(y,r)∈Ek

cy,rFy,r

∣∣∣ > λ}
)

.
(
λ−p + λ

2p
d−1

−2 log(2 + λp)
)∑

k

2k(d−1)λ−p#Ek ,

and the proof is concluded by observing that for λ > 1

λ
2p
d−1

−2 log(2 + λp) . λ−p if p <
2(d− 1)

d+ 1
.

6. Characterization of radial Fourier multipliers and

further results

One can generalize the theorem in the previous section to obtain
a characterization of all Lp bounded operators which commute with

rotations and translations, in the range 1 < p < 2(d−1)
d+1

. The following
is proved in [24].

Theorem 6.1. Let m = h(| · |) be a bounded radial function on Rd and
define the convolution operator Th on Rd by

(6.1) T̂hf(ξ) = h(|ξ|)f̂(ξ).
Let 1 < p1 <

2d
d+1

and assume that (5.7) holds for p1. Let 1 < p <

p1, and let η be any nontrivial Schwartz function on Rd and let φ be
any nonzero C∞

c function compactly supported on (0,∞). Then the
following statements are equivalent.

(i) Th is bounded on Lp.

(ii) Th maps Lp
rad

to Lp
rad

.

(iii) supt>0 t
d/p

∥∥Th[η(t·)]
∥∥
p
<∞

(iv) The functions κt = F−1
R

[φh(t·)] belong to Lp((1+|r|)(d−1)(1−p/2)dr)
with norm uniformly bounded independently of t.

The proof is somewhat technical and uses atomic decompositions of
Lp spaces. By the results of the previous sections we have the following
corollary (proved first in [23]).

Corollary 6.2. Let d ≥ 4 and 1 < p < 2(d−1)
d+1

. Then statements (i) -
(iv) are equivalent.

It would be very interesting to get a sharp inequality in two and
three dimensions, for some nontrivial range of p.
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It is easy to see (by Hölder’s inequality on dyadic intervals and
Plancherel’s theorem) that

(6.2)
(∫ ∣∣κ(r)(1 + |r|)(d−1)(1−p/2)dr

)1/p

. ‖κ̂‖B2
d/p−d/2,p

.

Thus Conjecture II, for d ≥ 4 in the range p < 2(d−1)
d+1

follows from
Conjecture III . However one can modify the proofs of Theorems 5.1
and 6.1 to get Conjecture II and its global analogue in the range of the
Tomas restriction theorem for the sphere, see [30].

Theorem 6.3. For d ≥ 2, 1 < p < 2(d+1)
d+3

,
∥∥F−1[h(| · |)f̂ ]

∥∥
p
. sup

t>0
‖ϕh(t·)‖B2

d( 1p−
1
2 ),p

‖f‖p .

Finally, the upper bounds in Corollary 6.2 and Theorem 2.2 can be
interpolated (using Calderón’s [·, ·]θ-method, see [3]) to get the follow-
ing Ms

p theorem, for s between p and 2.

Theorem 6.4. Let d ≥ 4, and let m = h(| · |) be a bounded radial
function on Rd and let Th be as in (6.1). Let either

(a) 1 ≤ p < 2(d−1)
d+1

and p ≤ s ≤ 2,

or

(b) 2(d−1)
d+1

≤ p < 2(d+1)
d+3

and 1
2
< 1

s
< d+1

2
(1
p
− 1

2
).

Then the following are equivalent:

(i) Th maps Lp to Ls.

(ii) Th maps Lp
rad

to Ls
rad

.

(iii) supt>0 t
d/p

∥∥Th[η(t·)]
∥∥
s
<∞

(iv) Let κt = F−1
R

[φh(t·)]; then the function td/p−d/sκt belong to
Ls((1 + |r|)(d−1)(1−s/2)dr) with norm uniformly bounded independently
of t.

Similarly, the Ms
p analogue of Theorem

Theorem 6.5. For d ≥ 2, 1 < p < 2(d+1)
d+3

, p ≤ s ≤ 2,
∥∥F−1[h(| · |)f̂ ]

∥∥
s
. sup

t>0
td(1/p−1/s)‖ϕh(t·)‖B2

d( 1s−
1
2 ),s

‖f‖p .

A Hardy space bound. The following Hardy space result is more ele-
mentary than Theorem 6.4. We let ϕ be a C∞

0 function supported in
(1/2, 2) such that

∑
k∈Z ϕ(2

k·) = 1.
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Theorem 6.6. Let d ≥ 2. For f ∈ S(Rd) define T by T̂ f(ξ) =

h(|ξ|)f̂(ξ) and Tk by T̂kf(ξ) = ϕ(2−k|ξ|)T̂ f(ξ). Then

‖T‖H1→L1 ≈ sup
k

‖Tk‖L1→L1.

Proof. Clearly if T : H1 → L1 then Tk : L1 → L1 with uniform bounds.

Vice versa let Kk be the radial kernel with K̂k = ϕ(|ξ|)h(2k|ξ|).
Then, as before we can write Kk =

∫∞
0

Kk(r)ψ ∗ σrdr where ψ =
ψ◦∗ψ◦ ∗ψ◦∗ψ◦, ψ◦ is supported in a ball of radius 1/4 and all moments
of order ≤ 5d of ψ◦ vanish. Let

B = sup
k∈Z

∫ ∞

0

|Kk(r)|(1 + r)d−1dr ≈ sup
k

‖Tk‖L1→L1 .

We use the atomic decomposition of H1 (see e.g. [47]). By translation
invariance and by dilation invariance of the hypothesis we need to prove
(6.3)∥∥∥
∑

k∈Z

∫ ∞

0

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

∥∥∥
1
. sup

k∈Z

∫ ∞

0

|Kk(r)|(1 + r)d−1dr

where supp(a) ⊂ {y : |y| ≤ 1}, ‖a‖∞ ≤ 1 and
∫
a(x)dx = 0.

For k < 0 we use the cancellation condition. We have

‖2kd[ψ ∗ σr](2k·) ∗ a‖1 . (1 + r)d−1‖2kdψ(2k·) ∗ a‖1
and since ‖2kdψ(2k·)∗a‖1 = O(2k) we see using Minkowski’s inequality

∥∥∥
∑

k≤0

∫ ∞

0

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

∥∥∥
1
. B

∑

k≤0

2k . B.

Next we consider the corresponding sum for k > 0. Note that the
expression

∫ 2k+10

0

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

is supported in {x : |x| ≤ C} and for every n ≥ 210 the expression

∫ 2k(n+1)

2kn

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

is supported in an annulus centered at 0 with radius ≈ n and width
≈ 1.
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We set ψ◦,k = 2kdψ◦(2
k·). Apply the Cauchy-Schwarz inequality on

{|x| ≤ C} and (5.3) to get

∥∥∥
∑

k≥0

∫ 2k+10

0

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

∥∥∥
1

.
∥∥∥
∑

k≥0

ψ◦,k ∗
∫ 2k+10

0

Kk(r)2
kd[ψ◦ ∗ ψ◦ ∗ σr](2k·) ∗ ψ◦,k ∗ a dr

∥∥∥
2

.
(∑

k≥0

∥∥∥
∫ 2k+10

0

Kk(r)2
kd[ψ◦ ∗ ψ◦ ∗ σr](2k·) ∗ ψ◦,k ∗ a dr

∥∥∥
2

2

)1/2

.
(∑

k≥0

[ ∫ 2k+10

0

|Kk(r)|‖ψ̂◦ ∗ σr‖∞‖ψ◦,k ∗ a‖2 dr
]2)1/2∥∥∥

2

. B(
∑

k

‖ψ◦,k ∗ a‖22)1/2 . B .

Finally, applying Cauchy-Schwarz on {x : ||x| − n| ≤ C}, and using
(5.3) again yields

∥∥∥
∑

k≥0

∑

n≥210

∫ 2k+n+1

2k+n

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

∥∥∥
1

.
∑

k≥0

∑

n≥210

n
d−1
2

∥∥∥
∫ 2k(n+1)

2kn

Kk(r)2
kd[ψ ∗ σr](2k·) ∗ a dr

∥∥∥
2

.
∑

k≥0

∑

n≥210

n
d−1
2

∫ 2k(n+1)

2kn

|Kk(r)|r
d−1
2 dr ‖a‖2

.
∑

k≥0

2−k d−1
2

∑

n≥210

∫ 2k(n+1)

2kn

|Kk(r)|rd−1dr ‖a‖2 . B .

�

Remark. There is no equivalent of Theorem 6.6 in the case d = 1.
Consider the even multipliers on the real line

mN(ξ) =
2N∑

k=N

ei2
k|ξ|χ(|ξ| − 2k)

where χ ∈ C∞
0 (R). Then the dyadic pieces represent multipliers with

L1 norm uniform in k, but the H1(R) → L1(R) operator norm is ≈
√
N
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for large N ; moreover for 1 < p ≤ 2, ‖mN‖Mp ≈ N1/p−1/2. See [34] and
[50]. This example is in some sense optimal, see [10], [43].

An Lp space time estimate for the wave equation. For the proof of
our Lp multiplier theorems we need the main inequality (5.7) only
for tensor product functions of the form g(y, r) = f(y)κ(r) . However
using duality, the more general inequality can be used to prove sharp
Lq-Sobolev space time estimates for the wave equation (see [23], [24]).

Theorem 6.7. For d ≥ 4, q > 2(d−1)
d−3

,

(6.4)
(∫ 1

−1

∥∥eit
√
−∆f

∥∥q

q
dt
)1/q

. ‖f‖Lq
α
, α = d(

1

2
− 1

q
)− 1

2
.

This can be compared with the fixed-time bound (Peral [40])
∥∥eit

√
−∆f

∥∥q

q
. ‖f‖q

Lq
β
, β = (d− 1)(

1

2
− 1

q
) .

Sogge’s ”local smoothing” conjecture [45] says that for q > 2d
d−1

the
inequality (6.4) should be true with α > β − 1/q. That is the t in-
tegration gains almost 1/q derivatives over the fixed time estimate.
Hence Theorem 6.7 realizes an endpoint version of Sogge’s conjecture
in a restricted q-range. For a variable coefficient analogue and other
extensions see [31]. The theorem improves, in high dimensions, the p
range in proofs based on Wolff’s inequality for plate decompositions
of cone multipliers ([59], [27]). In low dimensions the Wolff method
gives better (although currently no endpoint) results. Finally, Lee and
Vargas proved more recently that the wave operator maps Lq

ε(R
2) to

Lq(R2 × [−1, 1]), for any ε > 0 and 2 < q ≤ 3. Their method is differ-
ent and relies on multilinear adjoint restriction estimates by Bennett,
Carbery and Tao [2] and the method by Bourgain and Guth [7].
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Hölder spaces and Lp-spaces. Ann. of Math. (2) 85 (1967) 337–349.
[51] T. Tao, The weak-type endpoint Bochner-Riesz conjecture and related topics,

Indiana Univ. Math. J. 47 (1998), 1097–1124.
[52] , The Bochner-Riesz conjecture implies the restriction conjecture, Duke

Math. J. 96 (1999), 363–376.
[53] , A sharp bilinear restrictions estimate for paraboloids, Geom. Funct.

Anal. 13 (2003), no. 6, 1359–1384.
[54] T. Tao and A. Vargas, A bilinear approach to cone multipliers I. Restriction

estimates, Geom. Funct. Anal. 10 (2000), 185–215.
[55] , A bilinear approach to cone multipliers. II. Applications, Geom. Funct.

Anal. 10 (2000), 216–258.
[56] P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math.

Soc. 81 (1975), 477–478.
[57] H. Triebel, Theory of function spaces. Monographs in Mathematics, 78.
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