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1. Introduction

In many physical applications, the diffusion and/or the dissipation play the cru-
cial leading role. Such processes are then in the first approximation usually modeled
by the Laplace (the steady case) or by the heat (the evolutionary case) equations
and they could provide an useful insight into the physical phenomena we have in
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support. M. Buĺıček is a researcher in the University Centre for Mathematical Modelling, Applied
Analysis and Computational Mathematics (Math MAC) and member of the Nečas Center for
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mind. Unfortunately, as mentioned above, these models are just the first approxi-
mation1 of the reality. Therefore, in many applications it is of a real importance to
include also other natural phenomena that can not be covered by linear Laplace or
heat equation. We focus on three different aspects of such a generalization, namely
we want to include into the theory the following phenomena:

(P1) to consider the general fully nonlinear elliptic-like operator having almost
no structure;

(P2) to include the transport term into the equation;
(P3) to include as bad data as possible.

Let us briefly discuss the requirements (P1)–(P3). Concerning (P1), frequently the
diffusion is described by a linear second order operator. This is a very good approx-
imation in case that the fluxes (gradients of the unknown) are small or at least not
large. However, if we allow in the model the presence of large gradients the liner
operator is not a sufficient approximation of the diffusion. Moreover, not only non-
linearity may appear in the elliptic part but also lot of singular phenomena can be
presented, as for example certain thresholds making the elliptic part discontinuous
with respect to the unknown, dependence on other variables/unknowns that are
not smooth, etc. see below. To cover such wild behavior we employ the concept of
the maximal monotone graph, which seems to be the most proper tool for dealing
with such discontinuities. Concerning (P2), in many situation, not only diffusion
takes place but more important transport effects are observed and therefore can
not be neglected. In particular in continuum mechanics the transport term (or the
convection) usually dominates the problem and is driven by a velocity field that
has very poor regularity/integrability. Finally and most importantly, (P3) is the
leading difficulty in the analysis of the problem. Not only it is challenging from
the mathematical point of view but more importantly it is also the situation we
must deal with in many interesting application. Typically, the source terms in the
equations may be a measure supported on a compact subset representing either the
volume or the surface measure. In addition, coming again back to the continuum
mechanics, the right hand side of the heat equation represents the source of dissi-
pation, which is a priori exactly only in the space L1 or even worse in the space of
measures. From all these reasons one must focus on all (P1)–(P3) together and not
only develop a theory for particular cases.

1.1. The problem formulation. We look for a solution (u, q) to the following
scalar non-linear parabolic equation2

(1.1) u,t + div g(·, u)− div q = f in Q := (0, T )× Ω,

where T > 0 is the length of time interval and Ω is a bounded Lipschitz domain in
Rd with d ≥ 2, or its steady variant

(1.2) div g(·, u)− div q = f in Ω.

The equation (1.1) is completed by the initial condition

u(0, x) = u0(x) (x ∈ Ω)(1.3)

1In fact, any model is an approximation of the reality, and our goal is to fit the parameter of
the model such that it describes the real experiments in the range of the experimental data/setting

as precisely as possible
2Other names for (1.1) and (1.2) are non-linear heat equation with convection or non-linear

convection-diffusion equation.
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and for (1.1)–(1.2) we consider the homogeneous Dirichlet boundary conditions3,
i.e.,

u(t, x) = 0 for (t, x) ∈ (0, T )× ∂Ω or u(x) = 0 for x ∈ ∂Ω.(1.4)

To avoid any ambiguity in formulating further assumptions we employ the notation
O := Q and z := (t, x) if we consider (1.1), i.e., the parabolic case, and O := Ω
with z := x if we consider (1.2), the elliptic case. For sake of clarity, we also recall
the meaning of differential operators appearing in (1.1)–(1.2)

u,t :=
∂u

∂t
, div v :=

d∑
i=1

∂vi
∂xi

for all u : O → R and all v = (v1, . . . , vd) : O → Rd. Further, we assume that
g : O × R→ Rd and f : O → R are given data. To complete the problem we must
describe the relationship between u and q. Thus, we assume that there is a given

F : O × R× Rd × Rd → R

and we require that for almost all z ∈ O there holds

(1.5) F (z, u(z),∇xu(z), q(z)) = 0.

1.2. Assumptions on data. Here, we specify the assumptions on data. In what
follows we assume that C1 and C2 are given positive constants. First, we specify
the assumptions on F appearing in (1.5). For any z ∈ O and u ∈ R we identify
the null points of F with the graph A(z, u) ⊂ Rd × Rd, i.e., we say that for all
(w,u) ∈ Rd × Rd

(1.6) (w,u) ∈ A(z, u) ⇐⇒ F (z, u,w,u) = 0

and we assume that there exist q ∈ (1,∞) such that for almost all z ∈ O and all
u ∈ R, the graph A(z, u) is the maximal monotone q-graph that means

(A1) the graph contains the origin, i.e.,

(0,0) ∈ A(z, u).

(A2) the graph is monotone, i.e., for all (w1,u1), (w2,u2) ∈ A(z, u) there holds

(w1 −w2) · (u1 − u2) ≥ 0.

(A3) the graph is maximal, i.e., if for some (w,u) ∈ Rd × Rd and all (w̃, ũ) ∈
A(z, u) the following holds

(w − w̃) · (u− ũ) ≥ 0,

then (w,u) ∈ A(z, u).
(A4) the graph is q-coercive, i.e., for all (w,u) ∈ A(z, u) there holds

w · u ≥ C1(|w|q + |u|q
′
)− C2,

where q′ := q
q−1 .

3The use of a homegeneous Dirichlet data is not essential for the analysis. One could also use
the inhomogeneous conditions as well as the Neumann or the Newton type of boundary conditions.
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(A5) there exists a measurable selection, i.e., there exists q∗ : O×R×Rd → Rd
such that for almost all z ∈ O, all u ∈ R and all w ∈ Rd there holds

(w, q∗(z, u,w)) ∈ A(z, u).

Moreover, we require that q∗ is measurable with respect to z, continuous
with respect to u and Borel measurable with respect to w.

In addition, having the existence of selection, we can equivalently replace (A3) by
the following requirement

(A6) if for some (w,u) ∈ Rd × Rd and all w̃ ∈ Rd the following holds

(w − w̃) · (u− q∗(z, u, w̃)) ≥ 0,

then (w,u) ∈ A(z, u).

Next, for the term on the right hand side, we assume

(1.7) f ∈M(O), or f ∈ L1(O)

and similarly for the initial data, we consider

(1.8) u0 ∈M(Ω), or u0 ∈ L1(Ω).

Note that L1 stands for the standard Lebesgue space, while M denotes the space
of measures. Finally, for g we consider that it is of the form

(1.9) g(z, u) := vdiv(z)u+ v(z)g(u),

where

(1.10) v ∈ Lr(O), vdiv ∈ Ls(O) and div vdiv ≡ 0 in O,

for some given r, s ∈ [1,∞] and g : R → R is a continuous function fulfilling the
growth estimate

(1.11) |g(u)| ≤ C(1 + |u|)(q−1)p

for some p ∈ [0,∞).

1.3. Notation. We briefly recall the notation for standard Lebesgue and Sobolev
spaces. For p ∈ [1,∞] and k ∈ R+, we use the symbols Lp(Ω) and W k,p(Ω) for

Lebesgue and Sobolev spaces. We also defineW k,p
0 (Ω) := {ϕ; ϕ ∈W k,p(Ω), ϕ|∂Ω =

0} and we denote its dual (W k,p
0 (Ω))∗ by W−k,p

′
(Ω). For a Banach space X,

we introduce the standard Bochner space (Lp(0, T ;X), ‖ · ‖p;X). Further, M(O)
denotes the spaces of sign measures on the set O. We also write

∫
A
a · b =: (a, b)A

whenever a ∈ Lq(A) and b ∈ Lq
′
(A), and we use 〈·, ·〉A to denote the duality

pairing between various spaces X(A) and X∗(A) whenever it will be clear from
the context which X is taken into account. Finally, to simplify the presentation,
we introduce a variant of the grand Lp space and we denote Lp)(O) := {u; u ∈
Lr(O) for all r ∈ [1, p)} and similarly for the Sobolev spaces. Moreover, we do not
specify the explosion rate and simply write ‖u‖p) ≤ C whenever ‖u‖r ≤ C(r) for
all r ∈ [1, p), where we admit the possibility that C(r)→∞ as r → p−.
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In what follows, we will also use various truncation function. Hence, for k,
δ ∈ (0,∞) we define Tk and its δ-mollification Tk,δ as

Tk(z) :=

{
z if |z| ≤ k,
sign(z)k if |z| > k,

(1.12)

Tk,δ(z) :=

{
z if |z| ≤ k,
sign(z)(k + δ/2) if |z| ≥ k + δ,

(1.13)

whereas Tk,δ is defined on (k, k + δ) in such a way that Tk,δ ∈ C2(R), 0 ≤ T ′k,δ ≤ 1
uniformly with respect to δ for all z ∈ R, and Tk,δ is concave on R+ and convex
on R−. The functions Θk and Θk,δ denote the primitive functions to Tk and Tk,δ
respectively, that means

(1.14) Θk(s) :=

∫ s

0

Tk(t) dt, Θk,δ(s) :=

∫ s

0

Tk,δ(t) dt.

We also define the function χk := χk(u) as

χk(u) :=

{
1 if |u| ≤ k,
0 if |u| > k.

Frequently, we also use the notation T ′k(u) := χk(u) although it is not valid if
|u| = k.

2. Uniform a priori estimates

The aim of this section is to provide uniform a priori estimates for sufficiently
smooth solutions to (1.1) and (1.2) in terms of data under the assumptions in-
troduced in the previous section. These kind of estimates was first observed by
Boccardo and Murat [1992], Boccardo et al. [1997], but we present here a slightly
different (but in fact completely equivalent) hopefully easier method. Thus, in what
follows the constant C can depend on the Ω, q, C1, C2 and can vary from line to
line.

2.1. The key estimates. In this subsection we focus on the standard a priori
estimate for heat-like or parabolic-like estimates with the right hand side in L1.
Thus, the purpose of this subsection is to derive the estimates depending only
‖f‖1, ‖u0‖1 but still possibly on v and g(u). Note that these estimates will not
depend on vdiv. We start with the following elementary observation.

Lemma 2.1. Let u be a “sufficiently” smooth4 solution to (1.1) or (1.2) then the
following inequalities hold for all k ∈ R+ and all t ∈ [0, T ]

‖Θk(u(t))‖1 +

∫ t

0

(q,∇uχk)Ω dτ ≤ C
∫ t

0

∫
Ω

|f ||u|χk + |v|q
′
|g(u)|q

′
χk dx dτ

+ Ck

∫ t

0

∫
Ω

|f |(1− χk) dx dτ + C (1 + ‖Θk(u0)‖1)

(2.1)

and in the steady case

(q,∇uχk)Ω ≤ C
∫

Ω

|f ||u|χk + |v|q
′
|g(u)|q

′
χk dx+ Ck

∫
Ω

|f |(1− χk) dx.(2.2)

4Here sufficiently smooth means, we can use u as a test function.
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Proof. We will prove only (2.1). Multiplying (1.1) by Tk(u), integrating over Ω and
using integration by parts, we observe that

(2.3) (ut, Tk(u))Ω + (q,∇Tk(u))Ω = (f, Tk(u))Ω − (div(vdivu+ vg(u)), Tk(u))Ω.

Next, using (1.14), it is evident that the first term can be rewritten as

(ut, Tk(u))Ω =
d

dt
‖Θk(u(t))‖1.

Similarly, since div vdiv = 0 and u has zero trace we obtain for the term on the
right hand side

(div(vdivu), Tk(u))Ω = (vdiv,∇uTk(u))Ω = (vdiv,∇Θk(u))Ω

= −(div vdiv,Θk(u))Ω = 0,

where we also used the integration by parts. For the last term on the right hand
side we use the integration by parts and the Young inequality to obtain

−(div(vg(u)), Tk(u))Ω = (vg(u),∇Tk(u))Ω ≤ C‖vg(u)χk‖q
′

q′ +
C1

2
‖∇uχk‖qq

(A4)

≤ C‖vg(u)χk‖q
′

q′ +
1

2
(q,∇uχk)Ω +

C2

2
,

where we used the identity

∇Tk(u) = ∇uχk.
Upon inserting all above inequalities into (2.3) and using the definition of χk, we
deduce that

d

dt
‖Θ(u)‖1 +

1

2
(q,∇Tk(u))Ω ≤ (|f |, |u|χk)Ω + (|f |, k(1− χk))Ω

C2

2
+ C‖vg(u)‖q

′

q′ .

Integration with respect to time then directly leads to (2.1). �

Based on the estimate stated in Lemma 2.1 we can deduce the first a priori
estimate

Lemma 2.2. Let u be a “sufficiently” smooth solution to (1.1) or (1.2) then the
following inequalities hold for all k ∈ R+

sup
t∈(0,T )

‖u(t)‖1 +

∫
Q

|∇Tk(u)|q + |qχk|q
′
dx dt

≤ C(k)

(
1 +

∫
Q

|f |+ |v|q
′
dx dt+ ‖u0‖1

)(2.4)

and in the steady case∫
Ω

|∇Tk(u)|q + |qχk|q
′
dx ≤ C(k)

(
1 +

∫
Ω

|f |+ |v|q
′
dx

)
(2.5)

Proof. The proof is a simple consequence of (2.1), the definition of χ, the continuity
of g (that means ‖g(u)χk‖∞ ≤ C(k)), the coercivity (A4) and the fact that for k ≥ 1

|u| − 1 ≤ Θ1(u) ≤ Θk(u) ≤ C(k)|u|.

�
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This Lemma gives first uniform a priori estimates for “bad” data. We see that
to control the right hand side, we just need that the initial condition u0 is bounded
in L1(Ω), the right hand side f is bounded in L1(O) and that v is bounded in

Lq
′
(O). However, the uniform estimates do not exclude the possibility that u if

infinite almost everywhere in steady case. To avoid such situation, we improve the
estimates in the following way.

Lemma 2.3. Let fulfil (2.4) or (2.5). Then for all λ > 1

∫
Q

|∇u|q + |q|q′

(1 + |u|)λ
dx dt

≤ C

λ− 1

(
1 +

∫
Q

|f |+ |v|
q′ |g(u)|q′

(1 + |u|)λ
dx dt+ ‖u0‖1

)(2.6)

and in the steady case

∫
Ω

|∇u|q + |q|q′

(1 + |u|)λ
dx ≤ C

λ− 1

(
1 +

∫
Ω

|f |+ |v|
q′ |g(u)|q′

(1 + |u|)λ
dx

)
.(2.7)

Proof. We again prove (2.6) since the proof of (2.7) is the same. First, we multiply
(2.1) by (1 + k)−1−λ with λ > 0 and then integrate with respect to k over (0,∞)
to get ∫ ∞

0

∫
Ω

Θk(u(t))

(1 + k)1+λ
dx dk +

∫ ∞
0

∫ t

0

(q,∇uχk)Ω

(1 + k)1+λ
dτ dk

≤ C
∫ ∞

0

∫ t

0

∫
Ω

|f ||u|χk
(1 + k)1+λ

+
|v|q′ |g(u)|q′χk

(1 + k)1+λ
dx dτ dk

+ C

∫ ∞
0

∫ t

0

∫
Ω

k|f |(1− χk)

(1 + k)1+λ
dx dτ dk + C

∫ ∞
0

∫
Ω

1 + Θk(u0)

(1 + k)1+λ
dx dk.

(2.8)

Next, we evaluate all terms. For this purpose, we introduce the following identities.
For arbitrary q : O → R there holds∫ ∞

0

∫
O

g(z)χk(u(z))

(1 + k)1+λ
dz dk =

∫
O

∫ ∞
0

g(z)χk(u(z))

(1 + k)1+λ
dk dz

=

∫
O

∫ ∞
|u(z)|

g(z)

(1 + k)1+λ
dk dz =

1

λ

∫
O

g(z)

(1 + |u(z)|)λ
dz

(2.9)

and

∫ ∞
0

∫
O

kg(z)(1− χk(u(z)))

(1 + k)1+λ
dz dk =

∫
O

∫ ∞
0

kg(z)(1− χk(u(z)))

(1 + k)1+λ
dk dz

=

∫
O

∫ |u(z)|

0

kg(z)

(1 + k)1+λ
dk dz =

1

(1− λ)λ

∫
O
g(z)

1 + λ|u(z)|
(1 + |u(z)|)λ

− g(z) dz

(2.10)
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Thus, using these identities in (2.8) we get∫ t

0

(q,∇u)Ω

λ(1 + |u|)λ
dτ ≤ C

∫ t

0

∫
Ω

|f ||u|
λ(1 + |u|)λ

+
|v|q′ |g(u)|q′

λ(1 + |u|)λ
dx dτ

+ C

∫ t

0

∫
Ω

|f |
λ(1− λ)

(
1 + λ|u|

(1 + |u|)λ
− 1

)
dx dτ

+ C

∫ ∞
0

∫
Ω

1 + Θk(u0)

(1 + k)1+λ
dx dk −

∫ ∞
0

∫
Ω

Θk(u(t))

(1 + k)1+λ
dx dk.

(2.11)

Finally, we evaluate the term with Θ.∫ ∞
0

∫
Ω

Θk(v)

(1 + k)1+λ
dx dk =

∫
Ω

∫ |v(x)|

0

∫ ∞
0

Tk(s)

(1 + k)1+λ
dk ds dx

=

∫
Ω

∫ |v(x)|

0

(∫ s

0

k

(1 + k)1+λ
dk +

∫ ∞
s

s

(1 + k)1+λ
dk

)
ds dx

=

∫
Ω

∫ |v(x)|

0

1

λ(1− λ)
((1 + s)1−λ − 1) ds dx

=

∫
Ω

(1 + |v(x)|)2−λ − 1

λ
− |v(x)|
λ(1− λ)

dx

Hence, inserting this expression into (2.11), assuming that λ > 1 and neglecting
non-positive terms on the right hand side, we finally obtain

(λ− 1)

∫ t

0

(q,∇u)Ω

(1 + |u|)λ
dτ ≤ C

∫ t

0

∫
Ω

|v|q′ |g(u)|q′

(1 + |u|)λ
+ |f | dx dτ

+ C

∫
Ω

1 + |u0| dx.
(2.12)

Hence, using (A4) for lower bound of the term on the left hand side, we immediately
get (2.6). �

2.2. Further estimates for proper g and v. All estimates derived in the pre-
vious subsection still depends on v and g(u), while the dependence on f and u0

reduces only to the assumption on their integrability. This section is devoted to re-
duction the dependence of all estimates only on the proper integrability of v and on
the growth assumptions for g. First, it evidently follows from Lemma 2.3 that the
minimal requirement is v ∈ Lq′ and the corresponding estimates are the following.

Lemma 2.4. Let u fulfil (2.4) or (2.5), g satisfy (1.11) with p > 1
q . Then there

holds

sup
t∈(0,T )

‖u(t)‖1 +

∫
Q

|∇u|q + |q|q′

(1 + |u|)qp
dx dt

≤ C(p, q)

(
1 +

∫
Q

|f |+ |v|q
′
dx dt+ ‖u0‖1

)(2.13)

and in the steady case∫
Ω

|∇u|q + |q|q′

(1 + |u|)qp
dx ≤ C(q, p)

(
1 +

∫
Ω

|f |+ |v|q
′
dx

)
.(2.14)

The restriction p > 1
q can be in fact omitted. We can always increase p such

that it is valid.
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Proof. The proof easily follows from Lemma 2.2 and Lemma 2.3, where we set
λ := qp. �

At this moment, we see that there is the key difference between the steady and
the unsteady case. While in the unsteady case, we can claim that u is finite almost
everywhere due to the estimate on ‖u(t)‖1, the estimate in steady case is much
weaker. However, in case that

(2.15) p ≤ 1,

that means we assume that the term with g behaves at most like |u|q−1, i.e., the
critical growth, we can deduce from (2.14) that

(2.16)

∫
Ω

|∇ ln(1 + |u|)|q dx ≤ C
(

1 +

∫
Ω

|f |+ |v|q
′
dx

)
.

Note that (2.16) still implies that |u| is finite almost everywhere and therefore gives
chance to introduce some (very weak) notion of a solution. On the other hand, we
see that in the steady case, we are not able to show finiteness of u in the supercritical
case p > 1. Note that it could be possible under some structural conditions on g
completed by the very weak assumptions on the sign of div v, which we however do
not discuss here.

We continue with improving the estimates for u in terms of better assumptions
on v. For simplicity and for the sake of clarity we focus only on the case q < d,
since the opposite case can be handled in a similar manner. Also we treat only the
case pq > 1 since for the opposite case, we already obtained the optimal estimates.

Lemma 2.5 (Improved estimates - steady case). Let Ω be a Lipschitz domain, u
fulfil (2.5) and g satisfy (1.11) with p < 1 and pq > 1. Then for all λ ∈ (1, pq)
there holds ∫

Ω

|u|
d(q−λ)
d−q +

|∇u|q + |q|q′

(1 + |u|)λ
dx ≤ C(p, q, λ, ‖f‖1, ‖v‖z(λ)),(2.17)

where,

z(λ) :=
d

q − 1

q − λ
(d− q)(1− p) + q − λ

.

Note that the constant C in (2.17) explodes as p↗ 1 or λ↘ 1.

Proof. We start the proof with the steady case. Using (2.7) and (1.11) we get∫
Ω

|∇u|q + |q|q′

(1 + |u|)λ
dx ≤ C

λ− 1

(
1 +

∫
Ω

|f |+ |v|q
′
+ |v|q

′
|u|pq−λ dx

)
.(2.18)

Hence, if 1 < λ < q, we can use the fact that u has zero trace on ∂Ω and conse-
quently with the help of the the Sobolev embedding we get (here we assume that
q < d otherwise we would write down the L∞ estimate)

(2.19)

‖(1 + |u|)1−λq ‖qdq
d−q
≤ C(1 + ‖(1 + |u|)1−λq − 1‖qdq

d−q
)

≤ C(1 + ‖∇(1 + |u|)1−λq ‖qq)

= C(λ, q)

(
1 +

∫
Ω

|∇u|q

(1 + |u|)λ
dx

)
.
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Thus, using this in (2.18) we gain for λ ∈ (1, pq]

‖(1 + |u|)1−λq ‖qdq
d−q
≤ C(λ)

(
1 + ‖f‖1 +

∫
Ω

|v|q
′
(

(1 + |u|)1−λq
) q(pq−λ)

q−λ
dx

)

≤ C(λ)

(
1 + ‖f‖1 + ‖v‖q

′

d
q−1

q−λ
d−dp+pq−λ

‖(1 + |u|)1−λq ‖
q(pq−λ)
q−λ
dq
d−q

)
,

(2.20)

where we used the Hölder inequality. Thus, applying the Young inequality, we get

‖(1 + |u|)1−λq ‖qdq
d−q
≤ C(λ)

(
1 + ‖f‖1 + ‖v‖

q−λ
(q−1)(1−p)
d
q−1

q−λ
d−dp+pq−λ

)
.(2.21)

Therefore, combining (2.21) with (2.18), we deduce (2.17). �

Next, since the proof of the following Lemma is in fact identical to the proof of
Lemma 2.5 we formulate it without the proof.

Lemma 2.6 (Improved estimates - unsteady case). Let Ω be a Lipschitz domain,
u fulfil (2.4) and g satisfy (1.11) with p < 1 and pq > 1. Then for all λ ∈ (1, pq)
there holds ∫ T

0

‖(1 + |u|)1−λq ‖qdq
d−q

dt+

∫
Q

|∇u|q + |q|q′

(1 + |u|)λ
dx dt

≤ C(p, q, λ, ‖f‖1, Y (v, λ), ‖u0‖1),

(2.22)

where,

Y (v, λ) :=

∫ T

0

‖v‖
q−λ

(q−1)(1−p)
d
q−1

q−λ
(d−q)(1−p)+q−λ

dt.

Finally, we focus on the unsteady case and show that in some cases we are able
to treat also the supercritical case p ≥ 1.

Lemma 2.7 (Improved estimates - unsteady case with p ≥ 1). Let Ω be a Lipschitz
domain, u fulfil (2.5) and g satisfy (1.11) with 1 ≤ p < d+1

d and pq > 1. Then for
all λ ∈ (1, pq) there holds∫

Ω

|u|
d(q−λ)
d−q +

|∇u|q + |q|q′

(1 + |u|)λ
dx ≤ C(p, q, λ, ‖f‖1, ‖v‖z(λ)q′ , ‖u0‖1),(2.23)

where,

(2.24) z(λ) := 1 +
(pq − λ)d

q(d+ 1− dp)
.

Proof. We again start with (2.6) and assuming that λ ∈ (1, q) we can deduce that
similarly as above that∫ T

0

‖(1 + |u|)
q−λ
q ‖qdq

d−q
dt+

∫
Q

|∇u|q + |q|q′

(1 + |u|)λ
dx dt

≤ C(‖f‖1, ‖u0‖1) + C

∫
Q

|v|q
′
(1 + |u|)pq−λ dx dt.

(2.25)

Our goal is to estimate the last term for which we use the already obtained infor-
mation

sup
t
‖u(t)‖1 ≤ C(‖f‖1, ‖u0‖1, ‖v‖q′).
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Note here that since we assume that λ < q the immediately pq − λ > 0. Conse-
quently, for any α ∈ [0, 1] we may estimate the last term on the right hand side of
(2.25) with the help of the Hölder inequality as follows.∫

Q

|v|q
′
(1 + |u|)pq−λ dx dt

=

∫
Q

|v|q
′
(1 + |u|)α(pq−λ)

(
(1 + |u|)

q−λ
q

) q
q−λ (1−α)(pq−λ)

dx dt

≤ C
∫ T

0

‖v‖q
′

zq′‖1 + |u|‖α(pq−λ)
1 ‖(1 + |u|)

q−λ
q ‖

q
q−λ (1−α)(pq−λ)
dq
d−q

dt

(2.26)

provided that

(2.27)
1

z
+ α(pq − λ) +

(1− α)(pq − λ)

q − λ
d− q
d
≤ 1.

Finally, applying the Young inequality, we see that (2.26) reduces to∫
Q

|v|q
′
(1 + |u|)pq−λ dx dt ≤ C

∫ T

0

‖v‖zq
′

zq′‖1 + |u|‖αz(pq−λ)
1 dt

+ ε

∫ T

0

‖(1 + |u|)
q−λ
q ‖

z′q
q−λ (1−α)(pq−λ)
dq
d−q

dt.

(2.28)

Hence, for a given z ∈ [1,∞), setting α such that

(2.29)
z′

q − λ
(1− α)(pq − λ) = 1,

we get ∫
Q

|v|q
′
(1 + |u|)pq−λ dx dt ≤ C

∫ T

0

‖v‖zq
′

zq′‖1 + |u|‖αz(pq−λ)
1 dt

+ ε

∫ T

0

‖(1 + |u|)
q−λ
q ‖qdq

d−q
dt,

(2.30)

and therefore the last term can be absorbed by the first term in (2.25) and we are
directly led to (2.23) using the L1 estimate for u. All we need is to find such z that
(2.27) is satisfied. First, note that assuming z > 1 and since p ≥ 1 then α ∈ [0, 1].
Substituting (2.29) into (2.27), we see that it is equivalent to find z fulfilling

(2.31) (pq − λ)d ≤ (z − 1)q(1 + d− pd).

Since λ < q the left hand side is nonnegative and therefore we see the restriction
p < 1 + 1

d otherwise the right hand side would be negative. Then an elementary
algebraic manipulation leads to (2.24). �

We end this section by proving the final estimates of all quantities appearing in
the problem (1.1) or in (1.2). For simplicity, we consider here, the most optimistic
case, i.e., the case when the integrability of v is good enough and when we can
control the natural quantity appearing in all estimates for all λ > 1. If it would
not be the case, we could simply use the same procedure, but with weaker results.
First, we consider the steady case.
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Lemma 2.8. Let q and u (being zero on ∂Ω) fulfill for all λ > 1

(2.32)

∫
Ω

|∇u|q + |q|q′

(1 + |u|)λ
dx ≤ C(λ).

Then for all 0 < ε� 1 the following holds∫
Ω

(1 + |u|)
d(q−1)
d−q −ε + |∇u|

d(q−1)
d−1 −ε + |q|

d
d−1−ε ≤ C(ε−1,Ω).(2.33)

Proof. Similarly as above, we can deduce from (2.32) and from the fact that u has
zero trace that

‖(1 + |u|)
q−λ
q ‖ dq

d−q
≤ C(λ),

which directly leads to the first estimate in (2.33), since λ can be taken arbitrarily
closed to one. Second, taking p < q and p̃ < q′ arbitrary we can deduce by the
Young inequality that∫

Ω

|∇u|p =

∫
Ω

(
|∇u|q

(1 + |u|)λ

) p
q

(1 + |u|)
pλ
q ≤ C(λ) +

∫
Ω

(1 + |u|)
pλ
q−p

∫
Ω

|q|p̃ =

∫
Ω

(
|q|q′

(1 + |u|)λ

) p̃
q′

(1 + |u|)
p̃λ
q′ ≤ C(λ) +

∫
Ω

(1 + |u|)
p̃λ
q′−p̃ ,

where we also used the assumption (2.32). Hence, to control the last term on the
right hand sides, we use the first part of the estimate (2.33) and we see that we
need to chose p, p̃ and λ such that

pλ

q − p
<
d(q − 1)

d− q
⇔ p <

d(q − 1)

d− 1
,

p̃λ

q′ − p̃
<
d(q − 1)

d− q
⇔ p̃ <

d

d− 1
.

The equivalence follows from the fact that λ can be chosen arbitrarily close to
one. Consequently, combining such a choice of parameters we gain the rest of the
estimate (2.33). �

Second, we focus on the unsteady case.

Lemma 2.9. Let q and u (being zero on ∂Ω) fulfill for all λ > 1

(2.34) sup
t∈(0,T )

‖u(t)‖1 +

∫
Q

|∇u|q + |q|q′

(1 + |u|)λ
dx dt ≤ C(λ).

Then for all 0 < ε� 1 the following hold
(2.35)∫

Q

(1 + |u|)q−
d−q
d −ε + |∇u|q−

d
d+1−ε + |q|1+ q′−1

d+1 −ε ≤ C(ε−1) if q >
2d

d+ 1
,∫

Q

|∇u|
q
2−ε + |q|

q′
2 −ε ≤ C(ε−1) if q ≤ 2d

d+ 1
.

Proof. Similarly as above, we can deduce from (2.34) and from the fact that u has
zero trace that

(2.36)

∫ T

0

‖(1 + |u|)
q−λ
q ‖qdq

d−q
dt ≤ C(λ).
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Hence, we see that if q ≤ 2d
d+1 we did not improve any integrability with respect to

the spatial variable and the best estimate we have on u is that one coming from
(2.34). Therefore in this case, it is rather straightforward to observe (2.35). Indeed,
with the help of the Young inequality we get∫

Q

|∇u|
q
λ+1 =

∫
Q

(
|∇u|q

(1 + |u|)λ

) 1
λ+1

(1 + |u|)
λ
λ+1 ≤ C(λ) +

∫
Q

(1 + |u|),

and also∫
Q

|q|
q′
λ+1 =

∫
Q

(
|q|q′

(1 + |u|)λ

) 1
λ+1

(1 + |u|)
λ
λ+1 ≤ C(λ) +

∫
Q

(1 + |u|).

Thus using (2.34) we directly get the second part of (2.35). On the other hand, if
q > 2d

d+1 we can interpolate (2.36) and (2.34) to improve the integrability of u with
respect to the spatial variable as follows∫ T

0

‖u‖zz ≤
∫ T

0

‖(1 + |u|)
q−λ
q ‖

zq
q−λ
zq
q−λ

≤
∫ T

0

‖(1 + |u|)
q−λ
q ‖(1−α) zq

q−λ
q

q−λ
‖(1 + |u|)

q−λ
q ‖

αzq
q−λ
dq
d−q

(2.34)

≤ C

∫ T

0

‖(1 + |u|)
q−λ
q ‖

αzq
q−λ
dq
d−q

(2.36)

≤ C(λ),

provided that αz
q−λ ≤ 1. Here, the interpolation is given by the formula (for z ∈

(1, d(q−λ)
d−q ))

(2.37)
q − λ
zq

=
(1− α)(q − λ)

q
+
α(d− q)

dq
.

Thus, if we choose the optimal α, i.e., α := q−λ
z , and substitute it into (2.37) we

get

(2.38) z = q − λ+
q

d
,

which directly lead to the first part of the estimate (2.35) if we let λ = 1 + ε. Next,
we focus on estimates on ∇u and also q. We proceed as above. Hence, taking p < q
and p̃ < q′ arbitrary we can deduce by the Young inequality that∫

Ω

|∇u|p =

∫
Ω

(
|∇u|q

(1 + |u|)λ

) p
q

(1 + |u|)
pλ
q ≤ C(λ) +

∫
Ω

(1 + |u|)
pλ
q−p

∫
Ω

|q|p̃ =

∫
Ω

(
|q|q′

(1 + |u|)λ

) p̃
q′

(1 + |u|)
p̃λ
q′ ≤ C(λ) +

∫
Ω

(1 + |u|)
p̃λ
q′−p̃ ,

where we also used the assumption (2.34). Hence, to control the last term on the
right hand sides, we use the first part of the estimate (2.35) and we see that we
need to chose p, p̃ and λ such that

pλ

q − p
< q − 1 +

q

d
⇔ p < q − d

d+ 1
,

p̃λ

q′ − p̃
< q − 1 +

q

d
⇔ p̃ < 1 +

q′ − 1

d+ 1
.
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The equivalence follows from the fact that λ can be chosen arbitrarily close to
one. Consequently, combining such a choice of parameters we gain the rest of the
estimate (2.35). �

3. How to solve the problem

3.1. Various notions of solution. In the previous section we provided a lot of
various estimates depending on the regularity of v. This gave us a hint in which
spaces we should look for a solution and we also observed that u may not necessarily
be a Sobolev (Bochner-Sobolev) function. Moreover, we also realized that not all
quantities in the studied equation are for such estimates integrable. Therefore,
we employ here two different notion of solution, both of them consistent with the
concept of the classical solution provided that the it itself is smoother. Hence, the
first set of definitions is related to a general notion of a weak solution.

Definition 3.1 (weak-steady). Let Ω ⊂ Rd be a Lipschitz set. Assume that that
the maximal monotone graph A satisfies (A1)–(A5). Assume that f ∈ M(Ω) and
that g is given by (1.9) with some measurable v and vdiv. We say that a couple
(u, q) is a weak solution to (1.2) if u : Ω → R and q : Ω → Rd are measurable
functions such that

u is finite almost everywhere in Ω,(3.1)

q ∈ L1(Ω;Rd),(3.2)

Tk(u) ∈W 1,q
0 (Ω) for all k ∈ R+,(3.3)

(∇Tk(u), T ′k(u)q) ∈ A(·, u) for all k ∈ R+ and a.e. in Ω,(3.4)

g(x, u(x)) ∈ L1(Ω;Rd),(3.5)

and satisfy

(q,∇ϕ)Ω = −(g(u),∇ϕ)Ω + 〈f, ϕ〉Ω for all ϕ ∈W 1,∞
0 (Ω).(3.6)

Definition 3.2 (weak-unsteady). Let Ω ⊂ Rd be a Lipschitz set. Assume that
that the maximal monotone graph A satisfies (A1)–(A5). Assume that f ∈M(Q),
e0 ∈ M and that g is given by (1.9) with some measurable v and vdiv. We say
that a couple (u, q) is a weak solution to (1.1) if u : Q → R and q : Ω → Rd are
measurable functions such that

u ∈ L1(Q),(3.7)

q ∈ L1(Q;Rd),(3.8)

Tk(u) ∈ Lq(0, T ;W 1,q
0 (Ω)) for all k ∈ R+,(3.9)

(∇Tk, T ′k(u)q) ∈ A(·, u) for all k ∈ R+ and a.e. in ∈ Q,(3.10)

g(t, x, u(t, x)) ∈ L1(Q;Rd),(3.11)

and satisfy

− (u, ϕ,t)Q + (q,∇ϕ)Q = −(g(u),∇ϕ)Q + 〈f, ϕ〉Q + 〈e0, ϕ(0)〉Ω
for all ϕ ∈ D(−∞, T ; C∞(Ω)).

(3.12)

As we saw there are lot of restrictions to get the existence of a weak solution. A
possibility how to avoid such restriction is introduce a different concept of solution
- the entropy solution. However, the prise we pay for such a definition is that we
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are not able to include the data in measures but we must impose the assumptions
on their integrability.

Definition 3.3 (entropy-steady). Let Ω ⊂ Rd be a Lipschitz set. Assume that that
the maximal monotone graph A satisfies (A1)–(A5). Assume that f ∈ L1(Ω) and

that g is given by (1.9) with some measurable v ∈ Lq′(Ω) and vdiv ∈ L1(Ω). We
say that a couple (u, q) is an entropy solution to (1.2) if u : Ω→ R and q : Ω→ Rd
are measurable functions such that

u is finite almost everywhere in Ω,(3.13)

qT ′k(u) ∈ Lq(Ω;Rd) for all k ∈ R+,(3.14)

Tk(u) ∈W 1,q
0 (Ω) for all k ∈ R+,(3.15)

(∇Tk(u), T ′k(u)q) ∈ A(·, u) for all k ∈ R+ and a.e. in Ω,(3.16)

and satisfy

(q,∇Tk(u− ϕ))Ω ≤ (vg(u),∇Tk(u− ϕ))Ω + (f, Tk(u− ϕ))Ω

− (vdiv,∇ϕTk(u− ϕ))Ω for all ϕ ∈W 1,∞
0 (Ω).

(3.17)

Definition 3.4 (entropy-unsteady). Let Ω ⊂ Rd be a Lipschitz set. Assume that
that the maximal monotone graph A satisfies (A1)–(A5). Assume that f ∈ L1(Q),

e0 ∈ L1(Ω) and that g is given by (1.9) with some measurable v ∈ Lq
′
(Q) and

vdiv ∈ L1(Q). We say that a couple (u, q) is an entropy solution to (1.1) if u :
Q→ R and q : Ω→ Rd are measurable functions such that

u ∈ L∞(0, T ;L1(Ω)),(3.18)

qT ′k(u) ∈ L1(Q;Rd) for all k ∈ R+,(3.19)

Tk(u) ∈ Lq(0, T ;W 1,q
0 (Ω)) for all k ∈ R+,(3.20)

(∇Tk, T ′k(u)q) ∈ A(·, u) for all k ∈ R+ and a.e. in ∈ Q,(3.21)

and satisfy

∫
Ω

Θk(u(t)− ϕ(t)) dx+

∫ t

0

(ϕt, Tk(u− ϕ))Ω + (q,∇Tk(u− ϕ))Ω + (vdiv,∇ϕTk(u− ϕ)) dτ

≤
∫ t

0

(vg(u),∇Tk(u− ϕ))Ω + (f, Tk(u− ϕ))Ω dτ +

∫
Ω

Θk(u0 − ϕ(0))

for all ϕ ∈ D(−∞, T ; C∞(Ω)).

(3.22)

Consistency of a definition

3.2. Results - existence & uniqueness. 5 First, we focus on the existence of a
weak solution. This however requires that we must impose good enough information
on the data so that all integrals are well defined. We do not provide here the
complete list of compatible assumptions but rather we keep the assumptions in
such a way that one can still use the estimates that do not differ from the standard
ones in the theory of elliptic equations with measure right hand side.

5All statements studied in this notes hold for f of the form f = f1 + f2, where f1 ∈ M(Q) (or

f ∈ L1(Q)) and f2 ∈ Lq′ (0, T ;W−1,q′ (Ω)). This easy generalization is omitted, for simplicity.
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Theorem 3.1 (Weak solution - steady). Let all assumptions of Definition 3.1 be
satisfied. Moreover, assume that

q >
2d

d+ 1
,(3.23)

p < 1,(3.24)

vdiv ∈ Lr(Ω;Rd) for r >
d(q − 1)

d(q − 1)− d+ q
,(3.25)

v ∈ Ls(Ω;Rd) for s >
d

d(1− p) + pq − 1
.(3.26)

Then there exists a weak solution to (1.2).

Theorem 3.2 (Weak solution - unsteady). Let all assumptions of Definition 3.2
be satisfied. Moreover, let

q >
2d

d+ 1
,(3.27)

p < 1 +
1

d
,(3.28)

vdiv ∈ Lr(Q;Rd) for r > 1 +
d

dq − 2d+ q
,(3.29)

v ∈ Ls(Q;Rd) for s > 1 +
d(pq − 1)

q(d+ 1− dp)
.(3.30)

Then there exists a weak solution to (1.1).

Theorem 3.3 (Entropy solution - steady). Let all assumptions of Definition 3.3
be satisfied. Moreover, assume that

p ≤ 1.(3.31)

Then there exists an entropy solution to (1.2). Moreover, if the graph A is indepen-

dent of u and strictly monotone, v ≡ 0 and vdiv ∈ Lq
′
(Ω) then the entropy solution

is unique.

Theorem 3.4 (Entropy solution - unsteady). Let all assumptions of Definition 3.4
be satisfied. Then there exists an entropy solution to (1.1). Moreover, if the graph

A is independent of u, v ≡ 0 and vdiv ∈ Lq
′
(Ω) then the entropy solution is unique.

4. Proofs

We show the existence of a solution by a proper approximative scheme. In
addition, the use of the same approximation is also a part of the uniqueness proof
for the entropy solution. Thus, for given f , u0, v and vdiv we introduce their
smooth approximations {fn, un0 ,vn,vndiv}∞n=1 fulfilling

(4.1)

vn → v strongly in Lr(O;Rd),

vndiv → vdiv strongly in Ls(O;Rd), div vndiv = 0,

fn ⇀∗ f weakly∗ in M(O),

un0 ⇀
∗ u0 weakly∗ in M(Ω),
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or in case that f ∈ L1(O) and u0 ∈ L1(Ω)

(4.2)
fn → f strongly in L1(O),

un0 → u strongly in L1(O).

For such regular data, we define an approximate problem to (1.1) as: for each n ∈ N
find (un, qn) such that

un,t + div

(
vndivu

n +
nvng(un)

n+ |g(un)|

)
− div q = fn in Q,

(∇un, qn) ∈ A(·, un) in Q,

u = 0 on (0, T )× ∂Ω,

un(0) = un0 in Ω.

(4.3)

Similarly for the stationary problem (1.2) we state a problem: for each n ∈ N find
(un, qn) such that

div

(
vndivu

n +
nvng(un)

n+ |g(un)|

)
− div q = fn in Ω,

(∇un, qn) ∈ A(·, un) in Ω,

u = 0 on ∂Ω.

(4.4)

The existence of a weak solution to (4.3) and (4.4) in case when q is a continuous
function of ∇u can be proven by using the monotone operator theory and compact
embedding theorems (Sobolev embedding or Aubin-Lions lemma) and goes back
to Minty. In case we work with the maximal monotone graphs, one could in fact
also quote Minty who was surely aware of such possible application. On the other
hand the first relevant study for the maximal monotone graph setting is goes to .....
For more recent results on the theory for maximal monotone graph setting with a
general (non-polynomial) growth assumptions we refer for example to ....

4.1. Existence - steady case. For both existence theorems, i.e., Theorem 3.1 and
Theorem 3.3, we use the approximation (4.4) and consider that for each n there is

a couple (un, qn) such that u ∈W 1,q
0 (Ω) and q ∈ Lq′(Ω;Rd) fulfilling

−
(
vndivu

n +
nvng(un)

n+ |g(un)|
,∇ψ

)
Ω

+ (q,∇ψ)Ω = (fn, ψ)Ω for all ψ ∈W 1,p
0 (Ω),

(∇un, qn) ∈ A(·, un) in Ω.

(4.5)

At this level of approximation, we may use un as a test function and therefore we
may employ the estimates from Section 2. Consequently, using Lemma 2.2, we get
from (2.5) and from the fact that r ≥ q′ in (4.1) that

(4.6) ‖Tk(un)‖1,p + ‖qnT ′k(un)‖q′ ≤ C(k),

where C(k) is independent of n. Moreover, since in both cases (weak solution or
entropy solution) p < 1, we deduce from Lemma 2.4 that

(4.7)

∫
Ω

|∇un|q + |qn|q′

(1 + |un|)q
≤ C.

Moreover, a direct consequence of (4.7) (see (2.16)) is

(4.8) ‖(sign un) ln(1 + |un|)‖1,q ≤ C.
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In addition, in case we deal with the weak solution, we also use Lemma 2.5 and
the assumption (3.26). Indeed, we want to use (2.17), where z(λ)-norm appear.
However, we see that for all relevant λ > 1 we have

z(λ) ≤ d

(d− q)(1− p) + q − 1
≤ r,

where r is given by (3.26) and (4.1). Thus, since Ω is bounded, we also have
‖vn‖z(λ) ≤ C‖vn‖r ≤ C and it follows from the assumption (3.26) and Lemma 2.5
that in case we are interested in weak solutions we also have

(4.9)

∫
Ω

|∇un|q + |qn|q′

(1 + |u|n)λ
≤ C(λ) for all λ > 1

and also from Lemma 2.8 we get

(4.10)

∫
Ω

|un|
d(q−1)
d−q −ε + |qn|

d
d−1−ε ≤ C(ε) for all ε > 0.

First convergence results. Having such a priori estimates in reflexive spaces we can
extract a subsequence that we do not relabel and using also the compact embedding
we find that

ωn := (sign un) ln(1 + |un|) ⇀ ω weakly in W 1,q
0 (Ω),(4.11)

ωn → ω strongly in Lq(Ω),(4.12)

ωn → ω almost everywhere in Ω.(4.13)

Next, due to the strict monotonicity of (sign s) ln(1 + |s|) we can find a uniquely
defined measurable u such that

(4.14) (sign u) ln(1 + |u|) := ω

and using also (4.13) we deduce that

un → u almost everywhere in Ω(4.15)

and from (4.6) we also have

Tk(un) ⇀ Tk(u) weakly in W 1,q
0 (Ω).(4.16)

In order to identify also the limit object q, we define

ηn :=
qn

(1 + |un|)q−1

and using (4.7) we gain

ηn ⇀ η weakly in Lq
′
(Ω;Rd)(4.17)

and we define the limit object q as

(4.18) q := (1 + |u|)q−1η.

Then it directly follows from (4.17)–(4.18) that for all b ∈ C0(R) we have

qnb(un) ⇀ qb(u) weakly in Lq
′
(Ω;Rd).(4.19)
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Moreover, in case we work with weak solution, we can use (4.10) and it follows from
(4.15) and (4.19) that

qn ⇀ q weakly in L
d
d−1−ε(Ω;Rd),(4.20)

un → u strongly in L
d(q−1)
d−q −ε(Ω)(4.21)

for all ε > 0.
Finally, we focus on the limit n → ∞ in (4.5). First, in case we want to deal

with the weak solution we need to show that

vndivu
n → vdivu strongly in L1(Ω;Rd),(4.22)

nvng(un)

n+ |g(un)|
→ vg(u) strongly in L1(Ω).(4.23)

To do so, we first observe as a direct consequence of (4.1) and (4.15) that the limits
in (4.22)–(4.23) are attained point-wisely almost everywhere in Ω. Thus to show
(4.22)–(4.23), it is enough to prove that for some δ > 0 we have

(4.24)

∫
Ω

|vndivu
n|1+δ + |vg(un)|1+δ ≤ C

and then by using the Vitali theorem we can complete the proof of (4.22)–(4.23).
The uniform estimate (4.24) is however the direct consequence of the assumptions
(3.25) and (3.26), the convergence assumption (4.1) and the Hölder inequality.

Limit passage. Now, we have everything prepared for letting n → ∞ in (4.5)1 to

obtain (3.6). Indeed, for ψ ∈ W 1,∞
0 (Ω), we can identify the limit in the first term

with the help of (4.22) and (4.23). The limit procedure in the second term, follows
from the weak convergence result (4.20) and the limit on the right hand side of
(4.5) can be easily identified by using the assumption (4.1)3. This in fact ends the
proof of Theorem 3.1 provided we show (3.4). This we postpone to the end of this
subsection and we proceed further with the entropy solution. For this purpose, we
set ψ := Tk(un − ϕ) in (4.5) with arbitrary ϕ ∈ W 1,∞

0 (Ω). Note that at this level
of approximation it is a legal test function due to the regularity of un. Hence, we
obtain

−
(
vndivu

n +
nvng(un)

n+ |g(un)|
,∇Tk(un − ϕ)

)
Ω

+ (q,∇Tk(un − ϕ))Ω

= (fn, Tk(un − ϕ))Ω.

(4.25)

To identify the limits, we first rewrite the first and the third term as follows

−(vndivu
n,∇Tk(un − ϕ))Ω = −(vndiv(un − ϕ),∇Tk(un − ϕ))Ω

− (vndivϕ,∇Tk(un − ϕ))Ω

= −(vndiv,∇Θk(un − ϕ))Ω − (vndivϕ,∇Tk(un − ϕ))Ω

= (div vndiv,Θk(un − ϕ))Ω + (div(vndivϕ), Tk(un − ϕ))Ω

= (vndiv, Tk(un − ϕ)∇ϕ)Ω,

where we used integration by parts and the fact that div vndiv = 0. For the third
term we use the following

(qn,∇Tk(un−ϕ))Ω = (qn−q∗(un,∇ϕ),∇Tk(un−ϕ))Ω+(q∗(un,∇ϕ),∇Tk(un−ϕ))Ω,
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where q∗ denotes the selection from the assumption (A5). Note that from the
monotonicity of the graph A(un) it follows that the first term is nonnegative. Using
these to identities, we can rewrite (4.25) in the way

(vndiv, Tk(un − ϕ)∇ϕ)Ω −
(
nvng(un)

n+ |g(un)|
,∇Tk(un − ϕ)

)
Ω

+ (qn − q∗(un,∇ϕ),∇Tk(un − ϕ))Ω + (q∗(un,∇ϕ),∇Tk(un − ϕ))Ω

= (fn, Tk(un − ϕ))Ω.

(4.26)

It remains to identify all limits in (4.26). First, we notice that the point-wise
convergence (4.15) leads to

Tk(un − ϕ) ⇀∗ Tk(u− ϕ) weakly∗ in L∞(Ω).(4.27)

Therefore, using also (4.2), it is not difficult to show that (note that here we need
the strong convergence of fn in L1 and the convergence in the space of measures
would not be sufficient)

(fn, Tk(un − ϕ))Ω → (f, Tk(u− ϕ))Ω.

Similarly, since ϕ is Lipschitz, it follows from (4.27) and (4.1) that (here the main
advantage of the entropy formulation appears, since wee se we need the compactnes
of vndiv only in the space L1)

(vndiv, Tk(un − ϕ)∇ϕ)Ω → (vdiv, Tk(u− ϕ)∇ϕ)Ω.

In addition, since ϕ is Lipschitz it follows that there exists M > 0 such that

|∇Tk(un − ϕ)| ≤ CT ′M (un)(1 + |∇TM (un)|).

Consequently, using (4.15) and (4.16), we see that

Tk(un − ϕ) ⇀ Tk(u− ϕ) weakly in W 1,q
0 (Ω),(4.28)

ng(un)∇Tk(un − ϕ)

n+ |g(un)|
⇀ g(u)∇Tk(u− ϕ) weakly in Lq(Ω;Rd).(4.29)

Thus using also the continuity of the selection with respect to u, the fact that ϕ is
Lipschitz and the assumption (4.1) (which means that vn is compact in Lq

′
), we

see that (
nvng(un)

n+ |g(un)|
,∇Tk(un − ϕ)

)
Ω

→ (vg(u),∇Tk(u− ϕ))Ω

(q∗(un,∇ϕ),∇Tk(un − ϕ))Ω → (q∗(u,∇ϕ),∇Tk(u− ϕ))Ω

Consequently, assuming that

(4.30) lim sup
n→∞

(qn − q∗(un,∇ϕ),∇Tk(un − ϕ))Ω ≥ (q − q∗(u,∇ϕ),∇Tk(u− ϕ))Ω,

we can let n→∞ in (4.26) to deduce (3.17). Hence, it remains to check (4.30) and
also (3.16).
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Identification of the graph. The rest of this section is devoted to the identification
of the most critical nonlinearity q, namely to show the validity of (3.4) or (3.16).
Then the proof of (4.30) for entropy solution will follow. For this purpose, we use
the Lipschitz approximation method and a technique based on the renormalization
of (4.4). We start with the renormalization property of (4.4). First, recall the
definition of the truncation function Tk in (1.12) and its mollification Tk,δ, see

(1.13). To do so, we set ψ := T ′k,δ(u
n)ϕ in (4.5) with arbitrary ϕ ∈W 1,q

0 (Ω). Doing

so, we observe that for all ϕ ∈W 1,q
0 (Ω) the following identity holds

−
(
vndivu

nT ′k,δ(u
n) +

nT ′k,δ(u
n)vng(un)

n+ |g(un)|
,∇ϕ

)
Ω

−
(
vndivu

n +
nvng(un)

n+ |g(un)|
, ϕ∇T ′k,δ(un)

)
Ω

+ (qnT ′k,δ(u
n),∇ϕ)Ω + (qn, ϕ∇T ′k,δ(un))Ω = (fnT ′k,δ(u

n), ϕ)Ω

(4.31)

Next, we rearrange the second term by using the fact that div vdiv = 0 na integra-
tion by parts as

−
(
vndivu

n, ϕ∇T ′k,δ(un)
)

Ω
=
(
vndivu

n, T ′k,δ(u
n)∇ϕ

)
Ω

+
(
vndivϕ, T

′
k,δ(u

n)∇un
)

Ω

=
(
vndivu

n, T ′k,δ(u
n)∇ϕ

)
Ω

+ (vndivϕ,∇Tk,δ(un))Ω

=
(
vndivu

n, T ′k,δ(u
n)∇ϕ

)
Ω
− (vndivTk,δ(u

n),∇ϕ)Ω .

Hence, substituting this into (4.31) we deduce

(qnT ′k,δ(u
n),∇ϕ)Ω =

(
nT ′k,δ(u

n)vng(un)

n+ |g(un)|
,∇ϕ

)
Ω

+ (vndivTk,δ(u
n),∇ϕ)Ω

− (qnϕ,∇T ′k,δ(un))Ω + (fnT ′k,δ(u
n), ϕ)Ω

+

(
nvng(un)

n+ |g(un)|
, ϕ∇T ′k,δ(un)

)
Ω

.

(4.32)

We focus on the limiting procedure in (4.32). Using the assumption (4.1), the point-
wise convergence (4.15), the boundedness of Tk,δ and the fact that T ′k,δ ∈ C0(R) we
can deduce

nT ′k,δ(u
n)vng(un)

n+ |g(un)|
→ T ′k,δ(u)vg(u) strongly in Lq

′
(Ω;Rd),(4.33)

vndivTk,δ(u
n)→ vdivTk,δ(u) strongly in L1(Ω;Rd).(4.34)

Moreover, using (4.1) and (4.6), we can for all k, δ extract a subsequence that we
do not relabel such that

qn · ∇T ′k,δ(un) ⇀∗ µ1 weakly∗ in M(Ω),(4.35)

fnT ′k,δ(u
n) ⇀∗ µ2 weakly∗ in M(Ω),(4.36)

nvng(un)

n+ |g(un)|
· ∇T ′k,δ(un) ⇀∗ µ3 weakly∗ in M(Ω).(4.37)

Note that here we do not claim that we are able to identify the measures µi but
we just want to use these results to let n → ∞ in (4.32). Indeed, using (4.33)–

(4.37) and also (4.19), it follows from (4.32) that for all ϕ ∈ W 1,∞
0 (Ω) (note that
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W 1,∞
0 (Ω) ↪→ C(Ω))

(qT ′k,δ(u),∇ϕ)Ω =
(
T ′k,δ(u)vg(u),∇ϕ

)
Ω

+ (vdivTk,δ(u),∇ϕ)Ω

− 〈µ1, ϕ〉Ω + 〈µ2, ϕ〉Ω + 〈µ3, ϕ〉Ω.
(4.38)

Consequently, let {wn}∞n=1 be an arbitrary sequence fulfilling

wn ⇀∗ w weakly∗ in W 1,∞(Ω),(4.39)

wn → w strongly in C(Ω).(4.40)

Then due to the (4.19) we can extract a subsequence such that

qnT ′k,δ(u
n) · ∇wn ⇀ µ4 weakly in Lq

′
(Ω).(4.41)

Our first particular goal is to show that

µ4 = qT ′k,δ(u) · ∇w almost everywhere in Ω.(4.42)

For this purpose we define zn := wnη with arbitrary η ∈ C1
0(Ω) and easily observe

from (4.39) and (4.40) that for z := wη

zn ⇀∗ z weakly∗ in W 1,∞
0 (Ω),(4.43)

zn → z strongly in C0(Ω).(4.44)

Thus setting ϕ := zn in (4.32) we find that

lim
n→∞

(qnT ′k,δ(u
n),∇zn)Ω = lim

n→∞

(
nT ′k,δ(u

n)vng(un)

n+ |g(un)|
,∇zn

)
Ω

+ lim
n→∞

(vndivTk,δ(u
n),∇zn)Ω

− lim
n→∞

(qnzn,∇T ′k,δ(un))Ω + (fnT ′k,δ(u
n), zn)Ω

+ lim
n→∞

(
nvng(un)

n+ |g(un)|
, zn∇T ′k,δ(un)

)
Ω

.

(4.45)

However, combining the convergence results (4.33)–(4.37) and (4.43)–(4.44), we see
that it is not difficult to identify limits on the right hand side of (4.45) to conclude
that

lim
n→∞

(qnT ′k,δ(u
n),∇zn)Ω =

(
T ′k,δ(u)vg(u),∇z

)
Ω

+ (vdivTk,δ(u),∇z)Ω

− 〈µ1, z〉Ω + 〈µ2, z〉Ω + 〈µ3, z〉Ω.
Thus setting also ϕ := z in (4.38) and comparing the both results we obtain

lim
n→∞

(qnT ′k,δ(u
n),∇zn)Ω = (qT ′k,δ(u),∇z)Ω,(4.46)

which by using the definition of zn and z leads to

lim
n→∞

(qnT ′k,δ(u
n),∇wnη)Ω = (qT ′k,δ(u),∇wη)Ω

+ lim
n→∞

(qT ′k,δ(u)w − qnT ′k,δ(un)wn,∇η)Ω

= (qT ′k,δ(u),∇wη)Ω,

(4.47)

where for the second equality we used (4.19) and (4.40). Thus, since µ4 unique, the
equality (4.42) directly follows from (4.47).

Next, we strengthen (4.41)–(4.42) such that they hold also for wn fulfilling only

(4.48) wn ⇀ w weakly in W 1,q(Ω).
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Of course such a result cannot be valid but for this reason we restrict ourselves onto
the smaller parts of Ω. For this purpose, we use the Biting lemma, see Lemma A.1.
Indeed, using (4.19), we see that∫

Ω

|qnT ′k,δ(un)|q
′
≤ C(k, δ)

and consequently we can find a nondecreasing sequence of measurable sets Ω` ⊂
Ω`+1 ⊂ Ω fulfilling

|Ω \ Ω`|
`→∞

0 ,

such that for each ` there exists a subsequence that we do not relabel

(4.49) |qnT ′k,δ(un)|q
′
⇀ µ5 weakly in L1(Ω`)

and consequently due to the equivalent characterization of a weakly compact sets
in L1 we see that for all ε > 0 there exists h > 0 such that for all Ω̃ ⊂ Ω` fulfilling
|Ω̃| < h there holds

(4.50)

∫
Ω̃

|qnT ′k,δ(un)|q
′
≤ ε.

Our next goal is to show that for arbitrary sequence wn fulfilling (4.48) we can for
each ` ∈ N extract a subsequence such that

qnT ′k,δ(u
n) · ∇wn ⇀ qT ′k,δ(u) · ∇w weakly in L1(Ω`).(4.51)

To do so, we apply the Lipschtiz approximation method, see Lemma B.1 and find
wnλ and Ωnλ := {x ∈ Ω; M |∇wn| > λ} such that

‖wnλ‖1,∞ ≤ C(λ),(4.52)

wnλ = wn in Ω \ Ωnλ,(4.53)

‖wnλ‖1,q ≤ C‖wn‖1,q.(4.54)

Therefore we can extract a subsequence and find wλ (note that wλ is not given by
the Lipschitz approximation lemma, but it is just a weak limit of the sequence)
such that

wnλ ⇀
∗ wλ in W 1,∞(Ω).

Therefore, we may apply (4.42) to conclude

qnT ′k,δ(u
n) · ∇wnλ ⇀ qT ′k,δ(u) · ∇wλ weakly in Lq

′
(Ω)

and consequently also

(4.55) qnT ′k,δ(u
n) · ∇wnλ ⇀ qT ′k,δ(u) · ∇wλ weakly in Lq

′
(Ω`)

for each ` ∈ N. Finally, we let λ→∞ in (4.55). To do so, we first observe that due
to the uniform integrability (4.50) we have∫

Ω`

|qnT ′k,δ(un)||∇wn −∇wnλ |
(4.53)

=

∫
Ωλ∩Ω`

|qnT ′k,δ(un)||∇wn −∇wnλ |

≤
(∫

Ωλ∩Ω`

|qnT ′k,δ(un)|q
′
) 1
q′

‖∇wn −∇wnλ‖q

≤
(∫

Ωλ∩Ω`

|qnT ′k,δ(un)|q
′
) 1
q′
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Thus, using the definition of Ωλ and the weak type estimate

|Ωλ| ≤
C‖∇wn‖1

λ
≤ C

λ
,

we can conclude from the property (4.50) that

(4.56) lim sup
λ→∞

sup
n

∫
Ω`

|qnT ′k,δ(un)||∇wn −∇wnλ | = 0.

Moreover, using (4.54) we see that ‖wλ‖1,p ≤ C and therefore we can extract a
subsequence (with respect to λ) such that

(4.57) wλ ⇀ w̃ weakly in W 1,q(Ω)

for some w̃ ∈ W 1,q(Ω). In fact we show that w̃ = w. Indeed, using the compact
embedding we have that

wnλ → wλ strongly in Lq(Ω).

Consequently,

‖wλ − w‖1 = lim
n→∞

‖wnλ − wn‖1 = lim
n→∞

∫
Ωnλ

|wnλ − wn| ≤ C|Ωλ|
1
q′ ≤ C

λq′

and therefore
lim
λ→∞

‖wλ − w‖1 = 0.

Since the weak limit w̃ is unique, we see that necessarily w̃ = w. Finally, combining
(4.55)–(4.57), we conclude (4.51).

It remains the last step, namely we choose wn := Tk(un) and consequently
w := Tk(u). Note that due to (4.16) it is a possible choice. Hence according to
(4.51) there holds

qnT ′k,δ(u
n) · ∇Tk(un) ⇀ qT ′k,δ(u) · ∇Tk(u) weakly in L1(Ω`).

However, since almost everywhere in Ω we have

qnT ′k,δ(u
n) · ∇Tk(un) = qnT ′k(un) · ∇Tk(un),

qT ′k,δ(u) · ∇Tk(u) = qT ′k(u) · ∇Tk(u)

we simply get that

qnT ′k(un) · ∇Tk(un) ⇀ qT ′k(u) · ∇Tk(u) weakly in L1(Ω`).(4.58)

The rest of the proof is based on the maximality of the graph. Let w ∈ Rd be
arbitrary. Denoting

un := q∗(·, un,w),

we have that ‖un‖∞ ≤ C and due to the continuity of q∗ with respect to un due
to the point-wise convergence of un (4.15) we deduce that

(4.59) un → u strongly in Lq
′
(Ω;Rd),

where u = q∗(·, u,w). Thus, taking into account (4.58) and (4.59) we observe

(qnT ′k(un)− un) · (∇Tk(un)−w) ⇀ (qT ′k(u)− u) · (∇Tk(u)−w) weakly in L1(Ω`).

(4.60)

But since (qnT ′k(un),∇Tk(un)) and also (un,w) belong to A(un) almost every-
where, we have that

(qnT ′k(un)− un) · (∇Tk(un)−w) ≥ 0 almost everywhere in Ω`



EQUATIONS WITH BAD DATA 25

and it directly follows from (4.60) that also

(qT ′k(u)− u) · (∇Tk(u)−w) ≥ 0 almost everywhere in Ω`).(4.61)

Thus, using the maximality of the graph, namely (A6), and the fact that w is
arbitrary, we deduce from (4.61) that

(qT ′k(u),∇Tk(u)) ∈ A(u) almost everywhere in Ω`.

Finally, since |Ω \ Ω`| → 0 as ` → ∞, we gen generalize the above formula to get
(3.4) and (3.16). This finishes the proof of the existence of a weak solution and it
remains to finish the proof also for the entropy solution, hence we need to show
(4.30).

First, it follows from (4.15) and the fact that ϕ ∈W 1,∞(Ω) that

Tk(un − ϕ)→ Tk(u− ϕ) strongly in L1(Ω)

and due to the Egorof theorem for any ε > 0 there exists Ωε fulfilling |Ω \ Ωε| ≤ ε
such that

(4.62) Tk(un − ϕ)→ Tk(u− ϕ) strongly in C(Ωε).

Next, denoting Ωδ := {x ∈ Ω; |u−ϕ| ≤ k−δ} then it follows from (4.62) that there
exists n0 such that for all n ≥ n0 there holds

(4.63) Tk(un − ϕ) = un − ϕ in Ωε ∩ Ωδ.

Hence, denoting M := ‖ϕ‖∞, using the monotonicity of the graph, we may deduce
the lower estimate (we recall the definition of Ω` in (4.49))∫

Ω

(qn − q∗(un,∇ϕ)) · ∇Tk(un − ϕ)

≥
∫

Ωε∩Ωδ∩Ω`

(qn − q∗(un,∇ϕ)) · ∇Tk(un − ϕ)

=

∫
Ωε∩Ωδ∩Ω`

(qn − q∗(un,∇ϕ)) · (∇un −∇ϕ)

=

∫
Ωε∩Ωδ∩Ω`

(qnT ′M+k(un)− q∗(un,∇ϕ)) · (∇TM+k(un)−∇ϕ),

where the last equality follows from the definition of M and Ωδ. Thus, using (4.58)
and the same procedure as in (4.60) we may deduce that

lim sup
n→∞

∫
Ω

(qn − q∗(un,∇ϕ)) · ∇Tk(un − ϕ)

≥ lim
n→∞

∫
Ωε∩Ωδ∩Ω`

(qnT ′M+k(un)− q∗(un,∇ϕ)) · (∇TM+k(un)−∇ϕ)

=

∫
Ωε∩Ωδ∩Ω`

(qT ′M+k(u)− q∗(u,∇ϕ)) · (∇TM+k(u)−∇ϕ)

=

∫
Ωε∩Ω`

(q − q∗(u,∇ϕ)) · ∇Tk−δ(u− ϕ).

(4.64)

Since the integrand is an integrable function, we can let δ → 0+, ε → 0+ and
`→∞ in (4.64) to gain (4.30). The proof is complete.
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4.2. Uniqueness - steady case. Let us consider that (q1, u1) is an arbitrary
entropy weak solution and in what follows we show that it coincides with the
solution constructed in the previous subsection. First, according to the assumptions
v ≡ 0 and therefore

(q1,∇Tk(u1 − ϕ))Ω ≤ (f, Tk(u1 − ϕ))Ω − (vdiv,∇ϕTk(u1 − ϕ))Ω(4.65)

for all ϕ ∈ W 1,∞
0 (Ω). Moreover, since vdiv is assumed to belong to Lq

′
(Ω;Rd) we

can use the density argument and see that (4.65) holds for all ϕ ∈W 1,q
0 (Ω)∩L∞(Ω).

Next, consider the couple (q, u) obtained by the limit procedure introduced in the
previous section, i.e., the limit obtained from the solution of

(qn,∇ψ)Ω − (vndivu
n,∇ψ)Ω = (fn, ψ)Ω for all ψ ∈W 1,q

0 (Ω).(4.66)

Moreover, this solution satisfies the renormalized equation (4.31), which reduces in
the case v = 0 to

(vndiv, ϕ∇Tm,δ(un))Ω + (qnT ′m,δ(u
n),∇ϕ)Ω + (qn, ϕ∇T ′m,δ(un))Ω

= (fnT ′m,δ(u
n), ϕ)Ω for all ϕ ∈ L∞ ∩W 1,q

0 (Ω).
(4.67)

Finally, we set ϕ := Tm,δ(u
n) in (4.65) and ϕ := −Tk(u1 − Tm,δ(un)) in (4.67) and

sum the result to obtain

(q1 − qnT ′m,δ(un),∇Tk(u1 − Tm,δ(un)))Ω

≤ (f − fnT ′m,δ(un), Tk(u1 − Tm,δ(un)))Ω

− (vdiv − vndiv,∇Tm,δ(un)Tk(u1 − Tm,δ(un)))Ω

+ (qn, Tk(u1 − Tm,δ(un))∇T ′m,δ(un))Ω.

(4.68)

Our first, goal is to let δ → 0+. Such a procedure is easy in the first three terms
but we must check the last one where T ′′k,δ appears and may become singular. First,
using the Hölder inequality, we have an estimate

(qn, Tk(u1 − Tm,δ(un))∇T ′m,δ(un))Ω ≤ k(|T ′′m,δ(un)|qn,∇un)Ω

= −k(T ′′m,δ(|un|)qn,∇un)Ω.
(4.69)

Note that the right hand side is nonnegative since (qn,∇un) ∈ A(un). To evaluate
the right hand side, we set ψ := 1 − T ′m,δ(un+) in (4.66), where un+ := max(0, un).

Note that ψ ∈W 1,q
0 (Ω). Doing so, we obtain the identity

− (qn, T ′′m,δ(u
n
+)∇un)Ω = (fn, 1− T ′m,δ(un+))Ω − (vndivu

nT ′′m,δ(u
n
+),∇un)Ω

= (fn, 1− T ′m,δ(un+))Ω + (vndiv(T ′m,δ(u
n
+)− 1),∇un+)Ω

= (fn, 1− T ′m,δ(un+))Ω + (vndiv,∇(Tm,δ(u
n
+)− un+))Ω

= (fn, 1− T ′m,δ(un+))Ω ≤ (|fn|, 1− T ′m−1,1(un+))Ω,

(4.70)

where we used the integration by parts formula and the inequality |1−T ′m,δ(un+)| ≤
1 − T ′m−1,1(un+). By the same procedure, we can obtain the same inequality also
for un− and the resulting inequality is of the form

− (qn, T ′′m,δ(|un|)∇un)Ω ≤ (|fn|, 1− T ′m−1,1(un))Ω.(4.71)

In addition, using the Hölder and the triangle inequality, one is directly led to

(f − fnT ′m,δ(un), Tk(u1−Tm,δ(un)))Ω ≤ k‖fn− f‖1 +k(|fn|, 1− 1−T ′m−1,1(un))Ω.
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Hence, substituting these estimates into (4.68) and letting δ → 0+ we deduce that

(q1 − qnT ′m(un),∇Tk(u1 − Tm(un)))Ω

≤ k‖fn − f‖+ k(|fn|, 1− T ′m−1,1(un))Ω

− (vdiv − vndiv,∇Tm(un)Tk(u1 − Tm(un)))Ω.

In the next step, we let n→∞. For the left hand side, we use the same procedure
as above to pass to the limit with possibly inequality sign. For the first two terms
on the right hand side we use the compactness of fn in L1 and also the point-wise
convergence of un and for the last term we use the compactness of vndiv in Lq

′
and

the boundedness of Tm(un) in W 1,q to gain the resulting inequality

(q1 − qT ′m(u),∇Tk(u1 − Tm(u)))Ω ≤ k(|f |, 1− T ′m−1,1(u))Ω.(4.72)

Note that due to the fact that (q1, u1) and (q, u) are solution we have point-wisely

q1 − qT ′m(u),∇Tk(u1 − Tm(u)) ≥ 0.

Consequently, letting m→∞ in (4.72) and recalling that u is finite almost every-
where in Ω we gain

‖(q1 − q) · ∇Tk(u1 − u)‖1 = 0

and by passing k →∞ we see that

(q1 − q) · (∇u1 −∇u) ≡ 0 in Ω.

However, the graph is assumed to be strictly monotone and since u1 = u on ∂Ω we
see that u1 ≡ u almost everywhere and the proof is complete.

4.3. Existence - unsteady case.

4.4. Uniqueness - unsteady case.

Appendix A. Tools

Lemma A.1. Let {fn}∞n=1 be a bounded sequence in L1(O) with O bounded mea-
surable set. Then there exists a nondecreasing sequence O` ⊂ O`+1 ⊂ O such that
|O \ O`| → 0 as `→∞ and for each ` ∈ N there exists a subsequence such that

fn ⇀ f weakly in L1(O`).

Appendix B. Lipschitz approximation of Sobolev functions

Lemma B.1. Let Ω ⊂ Rd be a Lipschitz domain. Then there exists a constant C
such that for all λ ∈ R+ and all w ∈W 1,1

0 (Ω) there exists wλ ∈W 1,∞
0 (Ω) fulfilling

|∇wλ| ≤ Cλ,(B.1)

wλ = w in Ω \ Ωλ,(B.2)

Ωλ := {x ∈ Ω; M |∇w|(x) > λ},(B.3)

‖wλ‖1,q ≤ C(q)‖w‖1,q for all q ∈ (1,∞].(B.4)

Proof. The proof is a combination of the results Acerbi and Fusco [1988], Frehse
et al. [2003], Diening et al. [2008] �
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Appendix C. Lipschitz approximation of Bochner functions

This appendix summarizes the properties of Lipschitz approximations of Bochner
functions. We prove only those assertions that extend the results established in
Diening et al. [2010] and are available in Buĺıček et al. [2012].
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