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Abstract. These lectures are based on joint work with Tadeusz Iwaniec,
Istvan Prause and Eero Saksman, and on the papers [7]-[9] in particular.

The aim of the lectures is to discuss topics in the Vectorial calculus of
variations, using the methods of holomorphic deformations, but we will
also find strong interactions with norm estimates for Singular Integrals,
the Beurling transform in particular, and with optimal distortion results
in the theory of Quasiconformal Mappings.

1. Introduction and background

A basic question in Calculus of Variations is to characterise the continuous

functions E : Rn×m → R for which the corresponding functionals or the

”energy integrals”

(1.1) E[f ] :=

∫
Ω

E(Df) dx

are lower semicontinuous in appropriate Sobolev spaces, for instance

(1.2)

∫
Ω

E(Df(x)) 6 lim inf
j→∞

∫
Ω

E(Dfj(x))

whenever

fj
w∗

−→ f in W 1,∞(Ω,Rm).

For such functionals the problem of minimizing the integral E[f ], under any

given (sufficiently regular, e.g. continuous) boundary values always admits

a solution, in reasonable domains Ω (e.g. Ω bounded with ∂Ω smooth).

Hence characterisations of such functionals are of fundamental importance in

vectorial calculus of variations as well as in its applications in mathematics,

physics, engineering and beyond.

In his fundamental work [42], [43] Morrey showed that lower semicon-

tinuity of the functional E[f ] is equivalent to a property which he coined
1
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quasiconvexity. This asks that for every linear mapping A : Rn → Rm and

for every function f ∈ A+ C∞◦ (Ω,Rm) the inequality

(1.3) E[f ] :=

∫
Ω

E(Df) dx >
∫

Ω
E(A) dx = E(A)|Ω|

holds in any given bounded domain Ω ⊂ Rn. In other words, the condition

requires that compactly supported perturbations of linear maps do not de-

crease the value of the integral (1.3). However, except in the one dimensional

case, it is still an highly open question if quasiconvexity can be described

by more explicit conditions.

1.1. The one dimensional case. In case either dimension m = 1 or n = 1,

it is quickly shown that (1.2) and (1.3) are equivalent to the convexity of E.

For instance, if m = n = 1 and E fails to be convex,

E(c) > t0E(a) + (1− t0)E(b), c = t0a+ (1− t0)b ∈ [a, b],

then set

f(x) =

{
ax, x ∈ [0, t0]
b(x− t0) + at0, x ∈ [t0, 1],

and extend f(x) to R by requiring f(x+n) = f(x)+nf(1). Letting fj(x) :=

f(jx)/j, j ∈ N, we have

∫ 1

0
E(f ′j(x)) dx→ t0E(a) + (1− t0)E(b) < E(c) =

∫ 1

0
E(f ′∞)

even if

fj(x) := f(jx)/j
w∗

−→ f∞(x) ≡ cx in W 1,∞((0, 1),R).

Similarly, quasiconvexity fails since fj and the linear f∞ share the same

boundary values on the unit interval.

1.2. Higher dimensions. On the other hand, in higher dimensions we have

examples such as the Jacobian determinant E(A) = det(A) which provide

non-convex, yet quasiconvex functionals. Indeed, the value of the integral of

the Jacobian determinant depends only on the boundary values of the test

function, that is ∫
Ω

det(Df) dx =

∫
Ω

det(Dg) dx

whenever f, g ∈ C∞( Ω,Rn) with f(x) = g(x) for x ∈ ∂Ω.
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The natural problem of characterizing quasiconvex functionals in higher

dimensions still remains highly open. The are, though, some know condi-

tions sufficient for quasiconvexity. For instance, a functional E(A) is termed

polyconvex if it can be represented as a convex function of the minors (sub-

determinants) of the matrix A - in particular, the above example of the Ja-

cobian determinant falls in this class. It is known, see [12], that polyconvex

functionals satisfy (1.3). Quasiconvexity, though, is a strictly more general

condition [28], but proven examples outside polyconvexity are sparse.

A weaker notion is that of rank-one convexity. A modification of the

one dimensional description, this requires that t 7→ E(A+ tX) is convex for

any fixed matrix A and for any rank one matrix X. Rank-one convexity of

an integrand is a concrete local condition (relatively) easy to verify. That

quasiconvexity implies rank-one convexity is easy to see, by arguing in a

similar fashion as above for the one dimensional case. However, sufficiency

of the rank-one convexity remained open for quite some time. The question

was settled finally in the negative when Šverák [52] constructed rank-one

convex functionals which are not quasiconvex.

On the other hand, the celebrated counter-example of Šverák works only

in dimensions m > 3, see [48]. This leaves the possibility for different

outcome in dimension 2. For instance, Faraco and Szekelyhidi [30] show that

the quasiconvex hull of any compact set of 2× 2 matrices can be localized -

a fact which fails in higher dimensions, as shown by Kristensen [34].

Morrey himself was not quite definite in which direction he thought things

should be true, see [42], [43], and [14, Sect. 9]. We reveal our own thoughts

on the matter by recalling the following conjecture in the spirit of Morrey:

Conjecture 1.1. Rank-one convex functions E : R2×2 → R are quasicon-

vex.

1.3. The Burkholder functional. In these lecture notes we propose an

approach towards establishing quasiconvexity of functionals in two dimen-

sions, using the associated complex structure. For this, instead of study-

ing general rank-one functionals we concentrate on a specific example, the

Burkholder functional from [26].

Actually, for the methods we will apply instead of convexity, it is more

appropriate to approach the concavity: One says that E is rank-one concave
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(resp. quasiconcave) if −E is rank-one convex (resp. quasiconvex), and null-

Lagrangian if both quasiconvex and quasiconcave. The most famous (and,

arguably, the most important) rank-one concave function in two dimension

is the Burkholder functional from [26], defined for any 2× 2 matrix A by

(1.4) Bp (A) =
( p

2
detA + (1− p

2
)
∣∣A∣∣2 ) · |A|p−2, p > 2.

Above, we have chosen the normalization Bp (Id ) = 1 with the identity

matrix and the absolute value notation is reserved for the operator norm.

The functional was discovered by Burkholder in a completely different

setting, in his studies of optimal estimates for stochastic integrals and mar-

tingales, see [26, 24]. For 2 6 p < ∞ the functional Bp (A) is rank-one

concave - for 1 6 p 6 2 it is rank-one convex. There are [7] also versions of

the functional for any p < 1, p ∈ R, and [8] even for complex values of the

parameter p.

We also refer the reader to [9] where a multitude of further special prop-

erties of the Burkholder functional are discussed.

1.4. Iwaniec Conjecture. One of the particularly fascinating features of

the Burkholder functional and its conjectured quasiconcavity is the connec-

tion of this problem to the famous conjecture of Iwaniec on the p-norm of the

Beurling Transform. This transform is a Calderón-Zygmund type singular

integral,

(1.5) Sω = − 1

π

∫
C

ω(ξ) dξ

(z − ξ)2
,

which in many respects plays the role of the Hilbert transform in two dimen-

sions. The Beurling transform is an isometry in L 2(C), and as a Calderón-

Zygmund operator S is bounded in L p, but determining here the operator

norm is a much harder question. The as yet unsolved conjecture [36] of

Iwaniec asserts that

Conjecture 1.2. For all 1 < p <∞ it holds

(1.6) ‖S‖L p(C) = p∗ − 1 :=

{
p− 1 , if 2 6 p <∞

1/(p− 1) , if 1 < p 6 2

The full quasiconcavity of the Burkholder functional Bp would, among its

many potential consequences, imply also (1.6). This follows from another
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very useful inequality of Burkholder [26]. Namely, with the positive constant

Cp = p
(

1− 1
p

)1−p
for p > 2 , we have

Cp ·
(
|fz|p −(p−1)p|fz̄|p

)
6
(
|fz| − (p−1) |fz̄|

)
·
(
|fz| + |fz̄|

)p−1 ≡ Bp(Df)

Thus Burkholder’s functional can be viewed as an effective rank-one concave

majorant of the p-norm functional of the left hand side, see Section 9. It

is because of this connection why Morrey’s Problem becomes relevant to

Conjecture 1.2. For precise statements and further information on related

topics we refer to [17, 19, 26, 53].

It is also appropriate to emphasise the origin of the Burkholder’s func-

tional in his groundbreaking work on sharp estimates for martingales [23] -

[26]. This work has been later on extended in various ways, including ap-

plications to computing optimal or almost optimal estimates for norms of

singular integrals, e.g. of the Beurling operator. Also the Bellman function

techniques (see e.g. [46]) are closely related. We mention only [18], [20], [26],

[29], [31], [46], [47], [49], [53] and refer to the recent survey [17] for a wealth

of information and an extensive list of references.

2. Integral estimates for the Burkholder functional

Perhaps the main theme of these notes is to describe how with holo-

morphic deformations one can establish a partial quasiconcavity for the

Burkholder functional, in case of non-negative integrands and for pertur-

bations of the identity map:

Theorem 2.1. Let Ω ⊂ R2 be a bounded domain and denote by Id : Ω→ R2

the identity map. Assume that f ∈ Id + C∞◦ (Ω) satisfies Bp

(
Df(x)

)
> 0

for x ∈ Ω. Then∫
Ω
Bp (Df) dx 6

∫
Ω
Bp (Id ) dx = |Ω|, p > 2,

or, written explicitly

(2.1)

∫
Ω

( p
2
J(z, f) + (1− p

2
) |Df |2

)
· |Df |p−2 6 |Ω|.

Our proof of the above result is based on holomorphic deformations and

quasiconformal methods. In turn, the result has a multitude of implications
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e.g. towards optimal distortion bounds for quasiconformal mappings or

sharp integral estimates for the Beurling transform.

From the point of view of the theory of nonlinear elasticity of Antman [3],

Ball [12, 16], Ciarlet [27] and many others, for homogeneous materials the

elastic deformations f : Ω→ Rn are minimizers of a given energy integral

(2.2) E [f ] =

∫
Ω

E(Df) dx <∞

where the so-called stored energy function E : Rn×n → R carries the me-

chanical properties of the elastic material in Ω . By virtue of the principle

of non-interpenetration of matter the minimizers ought to be injective. It

is from these perspectives that our energy-estimates, although limited to

(quasiconformal) homeomorphisms, are certainly not short of applications.

As one might expect, passing to the limit in (2.1) as p→ 2 or as p→∞
will yield interesting sharp inequalities. The first mentioned limit leads to

Corollary 2.2. Given a bounded domain Ω ⊂ R2 and a homeomorphism

f : Ω
onto−→ Ω such that

f(z)− z ∈ W 1,2
0 (Ω),

we then have

(2.3)

∫
Ω

(
1 + log |Df(z)|2

)
J(z, f) dz 6

∫
Ω
|Df(z)|2 dz

Equality occurs for the identity map, as well as for a number of piece-wise

radial mappings discussed in Section 8.

Reflecting back on Conjecture 1.1, note that the functional

F (A) =
(
1 + log |A|2

)
det(A) − |A|2

is rank-one concave. However, with growth stronger than quadratic it is not

polyconcave [12], i.e. cannot be written as a concave function of the minors

of A. According to Corollary 2.2 this functional is nevertheless quasiconcave

with respect to homeomorphic perturbations of the identity. Going to the

inverse maps yields a quasiconvexity result for the functional

(2.4) H (A) :=
1

2

|A|2

detA
+ log

(
detA

)
− log |A|, detA > 0.

This can be interpreted as a sharp integrability of log J(z, f) for planar

maps of finite distortion, see [7].
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It is of course classical [44, 32] that the nonlinear differential expression

J(z, f) log |Df(z)|2 belongs to L 1
loc(Ω) for every f ∈ W 1,2

loc (Ω) whose

Jacobian determinant J(z, f) = detDf(z) is nonnegative. The novelty in

(2.3) lies in the best constant C = 1 in the right hand side, and the proof

of L logL -integrability of the Jacobian is new.

In turn, the limit p→∞ yields the following sharp inequality.

Corollary 2.3. Denote by S the Beurling-Ahlfors operator (defined in (1.5))

and assume that µ is a measurable function with |µ(z)| 6 χD(z) for every

z ∈ C. Then

(2.5)

∫
D

(
1− |µ(z)|

)
e|µ(z)| ∣∣exp(Sµ(z))

∣∣ dz 6 π.

Equality occurs for an extensive class of piece-wise radial mappings discussed

in Section 8.2.

Prior to the above result, it was known that the area distortion results

[4] yield the exponential integrability of Re Sµ under the strict inequality

‖µ‖∞ < 1, see [5, p. 387].

The proofs of the Corollaries are found in Section 7. Sections 8 and 9

contain further observations on the Burkholder functionals. For example,

their local maxima are discussed.

We then shortly describe the ideas behind the proofs of our main results,

which are given in Section 6. In fact we will prove a slightly generalized form

of Theorem 2.1, where we relax the identity boundary conditions to asymp-

totic normalization at infinity. This is done in Theorem 6.4 below, where

we will interpolate between the natural end-point cases p = 2 and p = ∞.

The holomorphic interpolation method used is inspired by the variational

principle of thermodynamical formalism and the underlying analytic depen-

dence coming from holomorphic motions. Here these are developed to a key

ingredient of our argument, a new variant of the celebrated Riesz-Thorin

interpolation theorem.

3. Interpolation

In order to describe the required interpolation result, let M (Ω, σ) de-

note the class of complex-valued σ-measurable functions on a measure space
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(Ω, σ) . The Lebesgue spaces L p(Ω, σ) are (quasi-)normed by

‖Φ‖p =

(∫
Ω
|Φ(z)|p dσ(z)

) 1
p

, 0 < p <∞ , and ‖Φ‖∞ = ess sup
z∈Ω

|Φ(z)|

Let U ⊂ C be a domain. We shall consider analytic families fλ of measurable

functions in Ω, i.e. jointly measurable functions (x, λ) 7→ fλ(x) defined on

Ω × U such that for each fixed x ∈ Ω the map λ → f(x, λ) is analytic in

U . The family is said to be non-vanishing if there exists a set E ⊂ Ω of

σ-measure zero such

(3.1) f(x, λ) 6= 0 for all x ∈ Ω \ E and λ ∈ U.

We state our interpolation result first in the setting of the right half plane,

U = H+ := {λ : Reλ > 0}, in order to facilitate comparison with the

Riesz-Thorin theorem:

Lemma 3.1 (Interpolation Lemma). Let 0 < p0, p1 6∞ and let {Φλ ; λ ∈
H+} ⊂ M (Ω, σ) be an analytic and non-vanishing family, with complex pa-

rameter λ in the right half plane. Assume further that for some a > 0,

M1 := ‖Φ 1‖p1 < ∞ and M0 := sup
λ∈H+

e−aReλ‖Φλ‖p0 <∞.

Then, letting Mθ :=
∥∥Φθ

∥∥
pθ

with
1

pθ
= (1− θ) · 1

p0
+ θ · 1

p1
,

we have for every 0 < θ < 1 ,

(3.2) Mθ 6 M1−θ
0 ·M θ

1 < ∞

Remark 3.2. Compared to Riesz-Thorin, our result needs the bound for

the other end-point exponent only at one single point, when λ = 1 ! How-

ever, without the non-vanishing condition the conclusion of the interpolation

lemma breaks down drastically. A simple example (where a = 0) is obtained

by taking p0 = 1, p1 =∞, and considering the family f(x, λ) =
(

1−λ
1+λ

)
g(x)

for Reλ > 0 and x ∈ Ω, for a function g ∈ L 1(Ω, σ) \
(⋃

p>1 L p(Ω, σ)
)
.

In applications one often has rotational symmetry, thus requiring a unit

disk version of the interpolation. After a Möbius transform in the param-

eter plane the interpolation lemma runs as follows (observe that we have

interchanged the roles of the indices p0 and p1 only for aesthetic reasons):
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Lemma 3.3 (Interpolation Lemma for the disk). Let 0 < p0, p1 6 ∞ and

{Φλ ; |λ| < 1} ⊂ M (Ω, σ) be an analytic and non-vanishing family with

complex parameter λ in the unit disc. Suppose

M0 := ‖Φ 0‖p0 <∞, M1 := sup
|λ|<1
‖Φλ‖p1 <∞ and Mr := sup

|λ|=r

∥∥Φλ

∥∥
pr
,

where

1

pr
=

1− r
1 + r

· 1

p0
+

2r

1 + r
· 1

p1

Then, for every 0 6 r < 1 , we have

(3.3) Mr 6 M
1−r
1+r

0 ·M
2 r

1+r

1 < ∞

Before embarking into the proof of the interpolation Lemma, let us remark

that often analytic families of functions are defined by considering analytic

functions having values in the Banach space L p(Ω, σ) for p > 1. In this

case it is well-known (e.g. [50, Thm. 3.31]) that one may define analyticity

of the family by several equivalent conditions, e.g. by testing elements from

the dual. This notion agrees with the definition given in the introduction,

see [5, Lemma 5.7.1].

Proof of Lemma 3.1. We may, and do, assume that M0 = 1 and that a = 0;

the case a > 0 reduces to this by simply considering the analytic family

e−aλΦλ(x). Similarly by taking restrictions we may assume σ(Ω) <∞.

We first consider the case 0 < p0, p1 <∞, and establish the result in the

situation where for a fixed A ∈ (1,∞) there is the uniform bound

(3.4)
1

A
6 |Φλ(x)| 6 A for all λ ∈ H+ and x ∈ Ω.

This is to ensure that all of our integrals and computations below are mean-

ingful. At the end of the proof we get rid of this extra assumption.

Let θ ∈ (0, 1) be given as in the statement of the lemma. First, we will

find the support line to the convex function 1
p 7→ log ‖Φθ‖p at 1

pθ
. We are

looking for a function up(θ) with the following properties,

(3.5) up(θ) =
1

p
I + u∞(θ) 6 log ‖Φθ‖p and upθ(θ) = log ‖Φθ‖pθ ,
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where I and u∞(θ) are independent of p. Using the concavity of the loga-

rithm function we can write down these terms explicitly. Indeed, by concav-

ity, for any probability density ℘(x) on Ω and for any exponent 0 < p <∞,

1

p

∫
Ω
℘(x) log

(
|Φθ(x)|p

℘(x)

)
dσ 6 log ‖Φθ‖p,

where equality holds for p = pθ with the following choice of density

(3.6) ℘(x) :=

∣∣Φθ(x)
∣∣pθ∫

Ω

∣∣Φθ(y)
∣∣pθ dσ(y)

,

∫
Ω
℘(x) dσ(x) = 1.

It is useful to note that because of our assumptions (3.4), the ℘ is uniformly

bounded from above and below. With this in mind we find the coefficients

in (3.5), by using the fixed density (3.6) and by writing

I :=

∫
Ω
℘(x) log

(
1

℘(x)

)
dσ and u∞(θ) :=

∫
Ω
℘(x) log |Φθ(x)| dσ.

The key idea in this representation is that we may embed the line up(θ)

in a harmonic family of lines parametrized by λ ∈ H+,

up(λ) :=
1

p
I + u∞(λ) =

1

p

∫
Ω
℘(x) log

(
|Φλ(x)|p

℘(x)

)
dσ.

It is important to notice that we kept the slope I fixed and because of the

non-vanishing assumption the constant term u∞(λ) becomes a harmonic

function of λ. Again, in view of Jensen’s inequality we have the envelope

property, the analogue of (3.5) for all λ ∈ H+ and 0 < p 6∞,

(3.7) up(λ) 6 log ‖Φλ‖p and upθ(θ) = log ‖Φθ‖pθ .

By our assumptions, for p = p0 we thus have up0(λ) 6 log ‖Φλ‖p0 6 0 for

all λ ∈ H+. Here Harnack’s inequality for nonpositive harmonic functions in

H+ takes a particularly simple form when restricted to the interval θ ∈ (0, 1):

(3.8) up0(θ) 6 θ up0(1) for θ ∈ (0, 1).

Finally combining the estimates (3.7) and (3.8) yields

log ‖Φθ‖pθ = upθ(θ) = up0(θ) +

(
1

pθ
− 1

p0

)
I

6 θ up0(1) + θ

(
1

p1
− 1

p0

)
I

= θ up1(1) 6 θ logM1,
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which is exactly what we aimed to prove.

The argument can easily be adapted to accommodate the cases when p0 =

∞ or p1 =∞. We will instead use a limiting argument. First, normalize to

σ(Ω) = 1, then ‖ · ‖p increases with p and one has ‖f‖∞ = limp→∞ ‖f‖p.
Hence, as (3.4) holds, we obtain the desired result by approximating the

possibly infinite exponents by finite ones.

Let us finally dispense with the extra assumption (3.4). Since the removal

of a null set from Ω is allowed, we may assume that the non-vanishing

condition holds for every x ∈ Ω, i.e. one may take E = ∅ in (3.1). Choose

first a family ϕn(λ) of Möbius transformations such that

ϕn(1) = 1, lim
n→∞

ϕn(λ) = λ, λ ∈ H+, and ϕn(H+) ⊂ H+, n ∈ N,

and let for any positive integer k,

(3.9) Ωn,k := {x ∈ Ω : |Φλ(x)| ∈ [1/k, k] for all λ ∈ ϕn(H+) }.

The measurable sets Ωn,k fill the space,
⋃∞
k=1 Ωn,k = Ω. Moreover, for each

fixed integer k > 1 the non-vanishing analytic family

(x, λ) 7→ Φϕn(λ)(x), x ∈ Ωn,k, λ ∈ H+,

satisfies the uniform bound (3.4), and thus we may interpolate it. Letting

k →∞ gives ‖Φϕn(θ)‖pθ 6M θ
1 , and the claim (3.2) follows by Fatou’s lemma

taking a second limit n→∞. �

We remark that the Harnack inequality used above can be deduced from

the standard Harnack inequality for negative harmonic functions in the unit

disc, u(w) 6 1−|w|
1+|w| u(0), by a change of variables λ = (1−w)/(1 +w). The

very same change of variables allows one to deduce Lemma 3.3 for the values

λ ∈ (0, 1) as a consequence of Lemma 3.1, and rest follows from rotational

symmetry.

4. Quasiconformal distortion

We start with some preliminaries. Our goal is to apply the Interpolation

Lemma 3.3 in estimating the variational integrals such as (2.1), and therefore

we look for analytic and nonvanishing families of gradients of mappings.

In view of the Lambda-lemma [41], to be discussed in Section 5, this

takes us to the notion of quasiconformal mappings. By definition, in any
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dimension n > 2 these are homeomorphisms f : Ω→ Ω′ in the Sobolev class

W 1,n
loc (Ω) for which the differential matrix Df(x) ∈ Rn×n and its determinant

are coupled in the distortion inequality,

(4.1) |Df(x)|n 6 K(x) detDf(x) , where |Df(x)| = max
|ξ|=1

|Df(x)ξ|,

for some bounded function K(x). The smallest K(x) > 1 for which (4.1)

holds almost everywhere is referred to as the distortion function of the map-

ping f . We call f K-quasiconformal if K(f) := ‖K(x)‖∞ 6 K.

In dimension n = 2 it is useful to employ complex notation by introducing

the Cauchy-Riemann operators

∂f = fz =
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and ∂̄f = fz̄ =

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
Writing

|Df(z)| = |fz| + |fz̄| and det Df(z) = J(z, f) = |fz|2 − |fz̄|2,

we see that for a planar Sobolev homeomorphism f the K-quasiconformality

simplifies to a linear equation

(4.2) fz̄ = µ(z)fz

called the Beltrami equation. Here the dilatation function µ is measurable

and satisfies ‖µ‖∞ =: k = K−1
K+1 < 1.

The Beltrami equation will then enable holomorphic deformations of the

homeomorphism f and of its gradient. Indeed, under a proper normalization

the solutions to (4.2) and their derivatives depend holomorphically on the

coefficient µ, see [5, p. 188].

For choosing the normalization, recall that Theorem 2.1 considers the

identity boundary values, and thus mappings that extend conformally out-

side Ω. We therefore look for solutions to (4.2) defined in the entire plane C,

with the dilatation µ vanishing outside the domain Ω. On the other hand,

the identity boundary values cannot be retained under general holomorphic

deformations; one needs to content with the asymptotic normalization

(4.3) f(z) = z + b1z
−1 + b2z

−2 + · · · , for |z| → ∞

Global W 1,2
loc -solutions to (4.2) with these asymptotics are called principal

solutions. They exist and are unique for each coefficient µ supported in the
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bounded domain Ω, and each of them is a homeomorphism. They can be

found simply in the form of the Cauchy transform

(4.4) f(z) = z +
1

π

∫
C

ω(ξ) dξ

z − ξ
, where ω = fz̄ ∈ L 2(C)

Substituting ω := fz̄ into (4.2) yields a singular integral equation for the

unknown density function ω ∈ L 2(C),

(4.5) ω − µSω = µ ∈ L 2(C),

where the Beurling Transform is an isometry in L 2(C). Whence (4.5) can

be solved by the Neumann series

(4.6) ω = µ+ µSµ+ µSµSµ+ · · ·

converging in L 2(C). In particular, we see that f and its derivatives fz, fz̄

depend holomorphically on µ !

We refer to the well-known monographs [1], [5] and [35] for the basic

properties and further details on quasiconformal mappings.

Returning to the integral estimates of Theorem 2.1, one observes that

the condition Bp (Df) > 0 in the Theorem is equivalent to |Df |2 6 p
p−2Jf ,

which actually amounts to quasiconformality of f . Indeed, in this setting

our result reads as follows:

Theorem 4.1. Let f : Ω−→Ω be a K-quasiconformal map of a bounded

open set Ω ⊂ C onto itself, extending continuously up to the boundary,

where it coincides with the identity map Id(z) ≡ z. Then∫
Ω
Bp (Df) dx 6

∫
Ω
Bp (Id ) dx = |Ω|, for all 2 6 p 6

2K

K − 1
.

Further, the equality occurs for a class of (expanding) piecewise radial map-

pings discussed in Section 8.

This result says, roughly, that the Burkholder functional is quasiconcave

within quasiconformal perturbations of the identity. It is quite interesting

that there is an equality in the above theorem for a large class of radial-like

maps. When smooth and p < 2K/(K−1) these are all local maxima for the

functional, see Proposition 8.2 and Corollary 8.3 for details. In particular,

the identity map is a local maximum of all the Burkholder functionals in

(1.4).
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Among the strong consequences of Theorem 4.1, one obtains (with the

same assumptions as in Theorem 4.1) that

(4.7)
1

|Ω|

∫
Ω

∣∣Df(z)
∣∣ p dz 6

2K

2K − p (K − 1)
, for 2 6 p <

2K

K − 1

with equality for piecewise power mappings, such as f(z) = |z|1−1/Kz in the

unit disk, see Corollary 7.1 below. The W 1,p-regularity ofK−quasiconformal

mappings, for p < 2K/(K − 1), was established in [4], as a corollary of the

area distortion theorem. However, there the bounds for integrals such as

in (4.7) were described in terms of unspecified constants depending on the

distortion bound K. Here we have obtained the sharp explicit bound for

the L p-integrals of the derivatives of K-quasiconformal mappings.

Similarly, for any K-quasiregular mapping f ∈ W 1,2
loc (Ω), injective or not,

we can improve the local W 1,p-regularity to weighted integral bounds at the

borderline exponent p = 2K/(K − 1),

(4.8)

(
1

K(x)
− 1

K

) ∣∣Df(x)
∣∣ 2K
K−1 ∈ L 1

loc(Ω).

We refer to Section 6 for a more thorough discussion and Section 8 for

elaborate examples of extremal mappings.

5. Holomorphic deformations

The computer animations revolutionized the complex dynamics in the

early 80’s, and among phenomena observed was strong geometric - not only

topological - stability in perturbations of hyperbolic systems; see Figure 1

for a typical illustration. Mañé, Sad and Sullivan [41] realized that these

phenomena can be completely understood in terms of the following funda-

mental notion, which will intimately tie up the holomorphic deformations

with the quasiconformal mappings, see Theorem 5.2 below.
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Figure 1. Two Julia sets with parameters from the same component of the

Mandelbrot set.

Definition 5.1. Let A be any subset of the complex plane C. Then a

holomorphic motion of A, parametrized by the unit disk D, is a map

Φ : D×A→ C

such that

i) For any fixed λ ∈ D, the map

a→ Φ(λ, a) = Φλ(a) is an injection.

ii) For any fixed a ∈ A, the map

λ→ Φ(λ, a) is holomorphic in D.

iii) The mapping Φ0 is the identity on A,

Φ(0, a) = a, for every a ∈ A, and

Thus the holomorphic motions represent minimal assumptions for a no-

tion of isotopy of a set A, where the dependence on time λ is holomorphic.

However, the Mañé-Sad-Sullivan Lambda-lemma [41] shows that necessarily

each Φλ is a quasisymmetric mapping of A, with quasisymmetry constants

depending only on |λ|. In particular, Φ extends to a motion of the clo-

sure A. This, with basic results from complex dynamics, already explains

the geometric rigidity observed in pictures such as Figure 1. On the other

hand, in case we are considering holomorphic deformations of the whole

space, since quasisymmetric maps of C are quasiconformal, a closer look at

Mañé-Sad-Sullivan Lambda-lemma leads to the following result.
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Theorem 5.2. The following conditions are equivalent:

i) fλ(z) = Φ(λ, z) defines a holomorphic motion of C, fixing the points 0, 1.

ii) fλ ∈W 1,1
loc (C) are homeomorphic solutions to the PDE

(∗) ∂z̄f(z) = µλ(z)∂zf(z), f(0) = 0, f(1) = 1

where λ 7→ µλ(z) holomorphic, with ‖µλ‖∞ 6 |λ|, λ ∈ D.

For further details see [5, Chapter 12]. Instead of maps normalised at 0 and

1, one may also consider principal solutions.

Conversely, given any quasiconformal mapping f : C → C, which is a

principal solution to (4.2), take the homeomorphic principal solutions fλ(z)

to (4.2) for the coefficients µλ(z) := (λ/k)µ(z). Then by (4.4)-(4.6) the maps

fλ depend holomorphically on the parameter λ ∈ D, in fact, they define a

holomorphic motion with Φk = f the original map f : C → C. Hence any

quasiconformal mapping can be embedded to a holomorphic motion.

In fact, even stronger conclusions are possible with help of the generalised

Lambda-lemma of Slodkowski [51]. This shows that any holomorphic motion

of any set A extends to a motion of the whole space C. In any case, the

Lambda-lemmas explain why holomorphic deformations and quasiconformal

estimates are so intimately tied together.

Moreover, it useful to observe that actually for all analytic families of

quasiconformal maps, the derivatives ∂zfλ are non-vanishing as required by

the interpolation Lemmas 3.1-3.3, i.e. non-vanishing outside a common set

of measure zero. For details see [7, Remark 3.6]

6. Proofs of the Main Theorems

We next recall some standard facts on smooth approximation of principal

solutions of the Beltrami equation, for details see [7]. First, we have

Lemma 6.1 (C 1, α-regularity). The principal solution of the Beltrami equa-

tion (4.2) in which µ ∈ C α(C) , 0 < α < 1 , is a C 1, α(C) - diffeomorphism.

In particular, |fz|2 > J(z, f) > 0 , everywhere.

As might be expected, almost everywhere convergence of the Beltrami

coefficients yields W 1, 2
loc - convergence of the principal solutions. The precise

statement reads as follows:
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Lemma 6.2 (Smooth Approximation). Suppose the Beltrami coefficients

µ
`
∈ C∞◦ (Ω) satisfy |µ

`
(z)| 6 k < 1 , for all ` = 1, 2, ..., and converge

almost everywhere to µ . Then the associated principal solutions f ` : C→
C are C∞-smooth diffeomorphisms converging in W 1, 2

loc (C) to the principal

solution of the limit equation fz̄ = µ(z)fz .

Every measurable Beltrami coefficient satisfying |µ(z)| 6 k χΩ(z) , 0 6

k < 1 , can be approximated this way.

As the last of the preliminaries, in applying the Interpolation Lemma 3.3

we will need sharp L 2-estimates of gradients, valid for all complex defor-

mations of a given mapping. For the principal solutions in the unit disk D,

these result from the classical Area Theorem (see e.g.[5, p. 41]).

Lemma 6.3 (Area Inequality). The area of the image of the unit disk under

a principal solution in D does not exceed π. It equals π if and only if the

solution is the identity map outside the disk.

Let us recall a proof emphasizing the null-Lagrangian property of the Jaco-

bian determinant. On the circle we have the equality f(z) = g(z) , where

g ∈ W 1,2(D) is given by g(z) = z +
∑
n>1

bn z̄
n , for |z| 6 1 . This yields∫

D
J(z, f) dz =

∫
D
J(z, g) dz =

∫
D

(
1− |gz̄(z)|2

)
dz 6 π

Equality occurs if and only if gz̄ ≡ 0 , meaning that all the coefficients bn

vanish.

Having disposed of these lemmas, we can now proceed to the proof of

the main integral estimate, where in the complex notation the Burkholder

functional takes the form

(6.1) B p
Ω [f ] :=

∫
Ω

(
|fz| − (p− 1) |fz̄|

)
·
(
|fz| + |fz̄|

)p−1
dz , p > 2.

We will actually deduce (2.1) from a slightly more general result, where we

relax the identity boundary values and allow principal mappings:

Theorem 6.4 (Sharp L p-inequality). Let f : C → C be the principal

solution of a Beltrami equation;

(6.2) fz̄(z) = µ(z) fz(z) , |µ(z)| 6 k χD(z) , 0 6 k < 1,

in particular, conformal outside the unit disk D.
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Then, for all exponents 2 6 p 6 1 + 1/k, we have

(6.3)

∫
D

(
1 − p |µ(z)|

1 + |µ(z)|

) (
|fz(z)|+ |fz̄(z)|

) p
dz 6 π.

Equality occurs for some fairly general piecewise radial mappings discussed

in Section 8.

The above form of the main result gives a flexible and remarkably precise

local description of the L p-properties of derivatives of a quasiconformal

map, especially interesting in the borderline situation p = 1 + 1/k. Indeed,

combined with the Stoilow factorization, the theorem gives for any W 1,2
loc (Ω)-

solution to (6.2), injective or not, the estimate

(6.4)
(
k − |µ(z)|

) ∣∣Df(z)
∣∣ 1+1/k ∈ L 1

loc(Ω).

Thus for all K-quasiregular mappings we obtain optimal weighted higher

integrability bounds at the borderline case p = 2K/(K−1). For p below the

borderline, the W 1,p
loc -regularity was established already in [4]. The borderline

integrability was previously covered [10] only in the very special case |µ| =
k · χE , for E ⊂ D, in Theorem 6.4.

The proof of Theorem 6.4 applies the Interpolation lemma in conjunction

with analytic families of quasiconformal maps. However, the choice of the

specific analytic family for our situation is quite non-trivial, in order to

enable sharp estimates. In a sense the speed of the change with respect

to the analytic parameter must be localized in a delicate manner, see (6.7)

below.

Proof of Theorem 6.4. Given a principal solution f to (6.2), with µ(z) ≡ 0

for |z| > 1, we are to prove the integral bounds (6.3). There is no loss of

generality in assuming that µ ∈ C∞◦ (D) , for if not, we approximate µ with

C∞◦ -smooth Beltrami coefficients, and, thanks to Fatou’s lemma, there is no

difficulty in passing to the limit in (6.3). On the other hand, this reduction

could be avoided by using the argument of [7, Remark 3.6].

With this assumption we fix an exponent 2 6 p 6 1 + ‖µ‖−1
∞ and look for

holomorphic deformations of the given function f , via an analytic family of
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Beltrami equations together with their principal solutions,

(6.5) F λz̄ = µ
λ
(z)F λz , µ

λ
(z) = τλ(z) · µ(z)

|µ(z)|
Here τλ(z) is an analytic function in λ to be chosen later with |τλ(z)| < 1.

We aim to explore Interpolation in the disk, Lemma 3.3, by applying it to

a suitable non-vanishing analytic family constructed from the derivatives of

F λ(z). Hence the question is the right choice of τλ.

We want F 0(z) ≡ z, thus τ0(z) ≡ 0, while for some value λ = λ◦ we need

to have τλ◦(z) = |µ(z)|, so that f = F λ◦ . Comparing the exponents in (6.3)

and in Lemma 3.3 suggests that we choose

(6.6) p = 1 +
1

λ◦
, p0 =∞, p1 = 2.

These conditions will then be confronted with the need of weighted L 2-

bounds consistent with the inequality (6.3).

To make the long story short, we choose

(6.7) µ
λ
(z) = τλ(z) · µ(z)

|µ(z)|
, where

τλ(z)

1 + τλ(z)
= p · |µ(z)|

1 + |µ(z)|
· λ

1 + λ
,

or more explicitly,

µ
λ
(z) =

p λµ(z)

(1 + λ) (1 + |µ(z)| ) − p λ |µ(z)|
The complex parameter λ runs over the unit disk, |λ| < 1 . One may

visualize λ 7→ τλ(z) as the conformal mapping from the unit disk onto the

horocycle {
w ∈ D : 2 Re

(
w

1 + w

)
< p · |µ(z)|

1 + |µ(z)|

}
determined by the weight function in (6.3).

From (6.7) one readily sees that |µ
λ
(z)| 6 |λ|χD(z), furthermore µ

λ
∈

C α(C) , 0 < α 6 1 . Therefore the equation (6.5) admits a unique principal

solution F λ : C → C , which is a C 1, α - diffeomorphism. It depends ana-

lytically [2] on the parameter λ , as seen by developing (4.5) in a Neumann

series, and we have

|F λz |2 > |F λz |2 − |F λz̄ |2 = J(z, F λ) > 0 , everywhere in C.

Moreover, F 0(z) = z with F λ◦ = f , where λ◦ was defined by (6.6).

As the non-vanishing analytic family {Φ
λ
}|λ|<1

we choose

(6.8) Φ
λ
(z) = F λz (z)(1 + τλ(z)).
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Explicitly,

Φ
λ
(z) =

(1 + λ) (1 + |µ(z)| ) F λz (z)

(1 + λ) (1 + |µ(z)| ) − p λ |µ(z)|
6= 0 , for all z ∈ D

Furthermore, since F λ◦ ≡ f , F λ◦z ≡ fz ,

(6.9) |Φλ◦(z)| = (1 + |µ(z)| ) |fz| = |fz| + |fz̄| = |Df |

We shall then apply the Interpolation Lemma 3.3 in the measure space

M (D , σ) over the unit disk, where

dσ(z) =
1

π

(
1 − p |µ(z)|

1 + |µ(z)|

)
dz

We start with the centerpoint λ = 0, where the Beltrami equation reduces

to the complex Cauchy-Riemann system Fz̄ ≡ 0 with principal solution the

identity map. Hence F 0
z ≡ 1 , Φ0(z) ≡ 1 and M0 = ‖Φ0‖∞ = 1 .

The estimate M1 = supλ∈D ‖Φλ‖2 6 1 requires just a bit more work.

First, in view of Lemma 6.3,∫
D
J(z, F λ) dz 6 π

with equality if and only if F λ(z) ≡ z outside the unit disk. Here we find

from (6.7) that

J(z, F λ) = |F λz (z)|2(1− |µλ(z)|2) = |Φλ(z)|2
(

1− 2 Re
τλ(z)

1 + τλ(z)

)
=

|Φλ(z)|2
(

1− p |µ(z)|
1 + |µ(z)|

Re
2λ

1 + λ

)
> |Φλ(z)|2

(
1− p |µ(z)|

1 + |µ(z)|

)

Hence

|Φ
λ
(z)|2 dσ(z) 6

1

π
J(z, F λ) dz

and, therefore,

M1 = sup
|λ|<1

∫
D
|Φ

λ
(z)|2 dσ(z) 6 sup

|λ|<1

1

π

∫
D
J(z, F λ) dz 6 1

We are now ready to interpolate. For every 0 6 r < 1 , in view of the

interpolation lemma, we have

Mr = sup
|λ|=r

‖Φ
λ
‖ 1+r

r
6M

1−r
1+r

0 M
2r

1+r

1 6 1.
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It remains to substitute r = 1
p−1 = λ◦ . The desired inequality is now

immediate,∫
D

(
1− p |µ(z)|

1 + |µ(z)|

) ∣∣Df(z)
∣∣ p dz = π

∫
D

∣∣Φλ◦(z)
∣∣ 1+r
r dσ(z) 6 π

�

Proof of Theorems 2.1 and 4.1. To infer Theorem 4.1 we extend f as the

identity outside Ω. Since Ω is bounded,
∫

Ω |Df |
2 6 K

∫
Ω J(x, f) < ∞ so

that f ∈ W 1,2(Ω). But then one easily verifies that the extended function

f defines an element of W 1,2
loc (C), and accordingly, a K-quasiconformal map

of the entire plane.

Consider then a disk DR ⊃ Ω. By re-scaling, if necessary, Inequality (6.3)

applies to DR in place of the unit disk and with |DR| in place of π. This

yields Bp
DR

[f ] 6 Bp
DR

[Id]. On the other hand Bp
DR\Ω[f ] = Bp

DR\Ω[Id] , by

trivial means. Hence Theorem 4.1 follows.

Theorem 2.1, in turn, is a direct consequence of Theorem 4.1. The

pointwise condition Bp (Df) > 0 for f = z + h(z), together with the

boundary condition h ∈ C∞0 (Ω), ensures that f represents a (smooth) K-

quasiconformal homeomorphism of Ω having identity boundary values. Here

p and K are related by p = 2K/(K − 1) and we may apply Theorem 4.1 at

the borderline exponent. �

7. Sharp L logL , L p and Exponential integrability

The sharp integral inequalities provided by Theorems 6.4 and 4.1 give us

a number of interesting consequences. We start with the following optimal

form of the Sobolev regularity of K-quasiconformal mappings.

Corollary 7.1. Suppose Ω ⊂ C is any bounded domain and f : Ω → Ω

is a K−quasiconformal mapping, continuous up to ∂Ω, with f(z) = z for

z ∈ ∂Ω. Then

(7.1)
1

|Ω|

∫
Ω

∣∣Df(z)
∣∣ p dz 6

2K

2K − p (K − 1)
, for 2 6 p <

2K

K − 1

The estimate holds as an equality for f(z) = z|z|1/K−1, z ∈ D, as well for a

family of more complicated maps described in Section 8.2.



22 KARI ASTALA

Proof. Inequality (7.1) is straightforward consequence of Theorem 4.1, since

for p < 2K/(K − 1) we have pointwise Bp

(
Df(x)

)
> |Df(x)|p 2K− p (K−1)

2K .

�

We next introduce yet another rank one-concave variational integral, sim-

ply by differentiating B p
Ω [f ] at p = 2 ,

(7.2) FΩ [f ] := lim
p↘2

B p
Ω [f ] − B 2

Ω [f ]

p − 2
=

1

2

∫
Ω

[ (
1 + log |Df(z)|2

)
J(z, f) − |Df(z)|2

]
dz

The nonlinear differential expression J(z, f) log |Df(z)|2 , for mappings with

nonnegative Jacobian, is well known to be locally integrable, see [32] for the

following qualitative local estimate on concentric balls B ⊂ 2B ⊂ Ω ,

(7.3) −
∫
B
J(z, f) log

(
e+

|Df(z)|2
−
∫
B
|Df |2

)
dz 6 C −

∫
2B
|Df(z)|2dz

see also Theorem 8.6.1 in [39]. However, for global estimates one must

impose suitable boundary conditions on f . For example, global L log L (Ω)

estimates follow from (7.3) if f extends beyond the boundary of Ω with

finite Dirichlet energy and nonnegative Jacobian determinant. This is the

case, in particular, when f(z)− z ∈ W 1,2
0 (Ω) .

Let us denote the class of homeomorphisms f ∈ W 1,2
loc (C) which coincide

with the identity map outside a compact set by W 1,2
id (C) . It is useful to

observe (see e.g. [5, Thm. 20.1.6]) that such a map is automatically uni-

formly continuous. Further, the C∞-smooth diffeomorphisms in W 1,2
id (C)

are dense. Precisely, one has

Lemma 7.2 (Approximation Lemma, [38, Thm. 1]). Given any homeo-

morphism f ∈ W 1,2
id (C) , one can find C∞-smooth diffeomorphisms f ` ∈

W 1,2
id (C) , ` > 1 , such that

‖f ` − f‖∞ + ‖D(f ` − f )‖L 2(C) → 0, as `→∞.

Passing to a subsequence if necessary, we may ensure that Df ` −→ Df

almost everywhere.

With estimates for the Burkholder integrals we now arrive at sharp global

L log L (Ω) bounds.
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Proof of Corollary 2.2. Upon the extension as identity outside Ω , f ∈
W 1,2

id (C) . We use the sequence { f ` } in the approximation Lemma 7.2,

and view each f ` as a principal solution to its own Beltrami equation

f `z̄ = µ`(z) f
`
z , |µ`(z)| 6 k` < 1 , µ`(z) = 0 , for |z| > R.

where R is chosen, and temporarily fixed, large enough so that Ω ⊂ DR =

{z : |z| < R} . It is legitimate to apply Theorem 4.1 for each of the maps

f ` : DR → DR ,

Bp
DR

[f `] 6 |DR| = B2
DR

[f `] , whenever 2 6 p 6 1 + k−1
`

Letting p↘ 2 we obtain

(7.4)

∫
DR

(
1 + log |Df `(z)|2

)
J(z, f `) dz 6

∫
DR

|Df `(z)|2 dz

Convergence theorems in the theory of integrals let us pass to the limit when

`→∞ , as follows ∫
DR

J(z, f)
[
1 + log |Df(z)|2

]
dz =∫

DR

J(z, f)
[
1 + log(1 + |Df |2)

]
dz −

∫
DR

J(z, f)
[

log(1 + |Df |−2)
]

dz

6 lim inf
`→∞

∫
DR

J(z, f `)
[
1 + log(1 + |Df `|2)

]
dz

− lim
`→∞

∫
DR

J(z, f `) log
(

1 + |Df `|−2
)

dz

Here the (lim inf)-term is justified by Fatou’s theorem while the (lim)-term

by the Lebesgue dominated convergence, where we observe that the inte-

grand is dominated point-wise by J(z, f `) |Df `|−2 6 1. The lines of com-

putation continue as follows

= lim inf
`→∞

∫
DR

J(z, f `)
[
1 + log |Df `|2

]
dz 6

lim inf
`→∞

∫
DR

|Df `|2 dz =

∫
DR

|Df(z)|2 dz

Finally, we observe that∫
DR\Ω

J(z, f)
[
1 + log |Df(z)|2

]
dz =

∫
DR\Ω

|Df(z)|2 dz ,

which combined with the previous estimate yields (2.3), as desired. �
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We next turn to the exponential integrability results, which will follow

from Theorem 6.4 at the limit p→∞.

Proof of Corollary 2.3. Let us assume we are given a function µ, supported

in D with |µ(z)| 6 1 for all z ∈ D. We then consider the principal solution

f of the Beltrami equation fz = εµfz and apply Theorem 6.4 with k = ε

and p = 1 + 1/ε to obtain

(7.5)

∫
D

(
1− |µ(z)|
1 + ε|µ(z)|

) ∣∣Df(z)
∣∣1+1/ε

dz 6 π.

By applying the Cauchy-Schwarz inequality and the L 2-isometric property

of S, wee see that for almost every z ∈ D, developing (4.5) to a Neumann

series represents fz as a power series in ε, with convergence radius > 1.

Hence

fz = 1 + εSµ+O(ε2) for a.e. z ∈ D.

We may use this to compute pointwise

(1 + 1/ε) log |Df | = (1 + 1/ε)
(

log(1 + ε|µ|) + log |fz|
)

= |µ|+ Re Sµ+O(ε).

Hence
∣∣ Df ∣∣1+1/ε

= exp(|µ|+ Re Sµ) +O(ε) and the desired result follows

at the limit ε→ 0 by an application of Fatou’s lemma on (7.5). �

8. Piecewise Radial Mappings

8.1. Examples of optimality in Theorems 2.1, 4.1 and 6.4. Our expo-

sition here is slightly condensed since the basic principle behind these exam-

ples can be found already in the paper [11] of Baernstein and Montgomery-

Smith, or in the work [37] of Iwaniec . Let us start by describing the building

block of the maps that yields equality in our main result. For any 0 6 r < R

consider the radial map

(8.1) g(z) = ρ( |z| ) z

|z|
defined in the disc {|z| 6 R}. We assume that ρ : [0, R]→ [0, R] is absolutely

continuous and strictly increasing with ρ(0) = 0, and that ρ is linear on [0, r].

We first restrict ourselves to the situation p > 1, and then need the following

expanding assumption

(8.2)
ρ(t)

t
> ρ̇(t) > 0 , t ∈ (r,R)
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together with the normalization ρ(R) = R. Hence on the boundary the map

g coincides with the identity map, and if needed we may extend g to the

exterior {|z| > R} by setting g(z) = z for these values.

The differential of g exhibits the following rank-one connections

(8.3) Dg(z) =
ρ(|z|)
|z|

Id+

(
ρ̇(|z|)− ρ(|z|)

|z|

)
z ⊗ z
|z|2

.

It is known, see [15, Proposition 3.4] that concavity along the indicated rank-

one lines already secures the quasiconcavity condition for the radial map g.

In our situation the assumption (8.2) indeed ensures that the Burkholder

integrals become linear on the rank-one segments displayed in (8.3), which

implies

(8.4) B p
B(0,R) [g] = B p

B(0,R) [Id].

Actually, a direct computation (see [11, 37] for details) using the formulas

gz(z) = 1
2

(
ρ̇(|z|) +ρ(|z|)/|z|

)
and gz̄(z) = 1

2

(
ρ̇(|z|)−ρ(|z|)/|z|

)
z/z̄ yields

B p
B(0,R) [g] = π

∫ R

0

(
[ ρ(t) ]p

tp−2

)′
dt = π

[ ρ(R) ]p

R p−2
− lim

t→0+
π

[ ρ(t) ]p

t p−2

= πR2 = |B(0, R)| = B p
B(0,R) [Id].

The above computation indicates that if r = 0 , we must in addition require

(8.5) ρ(t) = o(t
1− 2

p ) as t→ 0 .

Assume then that f0(z) = az + b is a (complex) linear map defined in a

bounded domain Ω ⊂ C. Given 0 6 r < R and a ball B(z0, R) ⊂ Ω together

with the increasing homeomorphism ρ : [0, R] → [0, R] and the radial map

g as discussed above, we may modify f0 in B(z0, R) by defining

f1(z) =

{
f0(z) if z 6∈ B(z0, R),
ag(z − z0) + (az0 + b) if z ∈ B(z0, R),

By scaling, (8.4) shows that we have B p
B(z0,R) [f1] = B p

B(z0,R) [f0], and, con-

sequently

(8.6) B p
Ω [f1] = B p

Ω [f0].

In the next step we may deform f1 in a disc that is contained in either one of

the sets Ω \B(z0, R) or B(z0, r), where f1 is linear. Inductively one obtains

fn from fn−1 by deforming fn−1 accordingly in the domains of linearity. By



26 KARI ASTALA

induction, we see that all such mappings have the same energy, which is

equal to the energy of their linear boundary data az + b:

(8.7) B p
Ω [fn] = B p

Ω [az + b] = ap |Ω|

This iteration process may, but need not, continue indefinitely so as to

arrive at e.g. Cantor type configuration of annuli and a homeomorphism

f∞ : Ω
onto−→ Ω∗ := aΩ+b. Without going to the formal definition, we loosely

refer to reasonable (e.g. converging in W 1,1) such limits f = limn→∞ fn as

piece-wise radial mappings, see Figure 2.

 

Figure 2. Annular Packing.

Definition 8.1. Let p > 1 and let Ω ⊂ C be any nonempty bounded

domain. The class A p(Ω) consists of piece-wise radial mappings f∞ :

Ω
onto−→ Ω whose construction starts with f0(z) ≡ z , the convergence

f∞ = limn→∞ fn takes place in W 1,p(Ω) and the condition (8.2) is in force.

The following observation is a direct corollary of (8.7).

Proposition 8.2. For any p > 1 and f ∈ A p(Ω) we have

(8.8) B p
Ω [f ] = B p

Ω [Id] = |Ω|.

In interpreting this conclusion one may say that B p
Ω is a null Lagrangian

when restricted to A p(Ω) .
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We get a plethora of fairly complicated maps that produce equality in

our main Theorems. One just needs to consider any f ∈ A p that satisfies

the additional condition Bp(Df(x)) > 0, i.e. in the construction one applies

maps ρ that satisfy

(8.9)
ρ(t)

t
> ρ̇(t) >

(
1− 2

p

) ρ(t)

t
.

In case of Theorem 2.1, in order to satisfy the smoothness assumption one of

course has to pick the functions ρ in the construction so that the (possibly

limiting) map belongs to Id+ C∞◦ (Ω).

In view of Conjecture 1.1, the maps in A p(Ω) are potential global ex-

tremals for B p
Ω . Indeed, it can be shown that they are critical points of the

associated Euler-Lagrange equations. Furthermore, this property to a large

extent characterizes Burkholder functionals: these functionals are the only

(up to scalar multiple) isotropic and homogeneous variational integrals with

the A p(Ω) as their critical points [9].

Here, we content with pointing out the following result, where we employ

the customary notation C 1
id(Ω) = id +C 1

◦ (Ω) , where C 1
◦ (Ω) stands for the

space of functions C 1 -smooth up to the boundary of Ω and vanishing on

∂Ω .

Corollary 8.3. The Burkholder functional B p
Ω : C 1

id(Ω) → R , p > 2 ,

attains its local maximum at every C 1- smooth piece-wise radial map in

A p(Ω) for which the condition (8.9) is further reinforced to:

(8.10)
ρ(t)

t
> ρ̇(t) >

1

K

ρ(t)

t
, K <

p

p− 2
.

Proof. The lower bound (8.10) can be used to verify that f isK-quasiconformal

with K < p/(p − 2). Namely, as f ∈ C 1
id(Ω) , one checks that f is neces-

sarily conformal at points corresponding to t = 0 and the derivative is

non-vanishing. Hence the strict inequality for K will not be destroyed by

small C 1 -perturbations. Theorem 4.1 applies, and by combining it with

Proposition 8.2 the claim is evident. �

8.2. Equality in Corollaries 2.2, 2.3 and 7.1 . If one substitutes in the

formula (7.2) a function for which B p
Ω[f ] = B 2

Ω[f ], we acquire the equality

in the L log L -inequality of Corollary 2.2. Especially, by (8.8) we obtain
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Lemma 8.4. Let Ω be a bounded domain in the plane. If f belongs to class⋃
p>2 A p(Ω), then there is equality in (2.3) in Corollary 2.2.

Actually, one checks that in the construction condition (8.5) can be replaced

by the analogue ρ(t) = o
(

log(1/t)−1
)
.

We next turn our attention to Corollary 2.3. It turns out that there, as

well, one has a very extensive class of functions µ of radial type that yield

an equality in the estimates. These functions can be viewed as infinitesimal

generators of the expanding class of radial mappings defined above.

Lemma 8.5. Let α : (0, 1)→ [0, 1] be measurable and with the property∫ 1

0

1− α(t)

t
dt =∞.

Set

µ(z) = −z
z̄
α(|z|) for |z| < 1, µ(z) = 0 for |z| > 1.

Then there is equality in Corollary 2.3, i.e.∫
D

(1− |µ(z)|) e |µ(z)| ∣∣exp(Sµ(z))
∣∣ dz = π

Proof. Let φ(z) = 2z
∫ 1
|z|

α(t)
t dt for |z| < 1 and set φ(z) = 0 elsewhere. Then

we compute that φ ∈ W 1,2(C) with

φz̄ ≡ µ, φz = Sµ(z) = 2

∫ 1

|z|

α(t)

t
dt− α(|z|), |z| < 1.

Thus ∫
D

(1− |µ(z)|)e|µ(z)|+Re Sµ(z)dm

= 2π

∫ 1

0

(
1− α(t)

)
exp

[
2

∫ 1

t

α(s)

s
ds

]
t dt = π,

as we have the identity

d

dt

(
t2 exp

[
2

∫ 1

t

α(s)

s
ds

])
= 2t

(
1− α(t)

)
exp

[
2

∫ 1

t

α(s)

s
ds

]
and our assumption gets rid of the substitution at t = 0. �

More complicated examples may be obtained by a similar iteration pro-

cedure as described above.
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Finally, equality in (7.1) obviously implies that necessarily the distor-

tion function K(z, f) ≡ K in Ω. Hence examples are produced by specific

functions ρ in (8.1), the powers

ρK(t) = R1−1/K t1/K , r < t < R,

where ρK(t) is linear on (0, r], if r > 0. For 2 6 p < 2K
K−1 let A p

K(Ω)

denote the subclass of A p(Ω) consisting of those piecewise radial mappings

where, first, we fill the domain Ω by discs or annuli up to measure zero,

second, at each construction step choose ρ = ρK , and third, choose r = 0 at

any possible subdisk remaining in the limiting packing construction. This

ensures that the limiting function f does not remain linear in any subdisk,

so that we have K(z, f) ≡ K up to a set of measure zero. Then, as |Ω| <∞,
it is easy to see that convergence f∞ = limj→∞ fj takes place in W 1,p since

now 1 − p|µj(z)|(1 + |µj(z)|)−1 > c0 > 0. Moreover, since there is equality

in Theorem 6.4 and K(z, f) ≡ K, one obtains for any f ∈ A p
K(Ω) that

1

|Ω|

∫
Ω

∣∣Df(z)
∣∣ p dz =

2K

2K − p (K − 1)
.

9. rank-one concave envelopes

Definition 9.1. Given a continuous function E : Rm×n → R , we use a

visual notation to define:

• Rank-one concave envelope of E (the smallest majorant) as,

EaR = inf{Ξ ; Ξ : Rm×n → R is rank-one concave, and Ξ > E}

• Quasiconcave envelope of E as,

EaQ = inf{Ξ ; Ξ : Rm×n → R is quasiconcave, and Ξ > E}

Obviously EaQ > EaR pointwise; the former function being quasiconcave

and the latter rank-one concave.

Theorem 9.2. Recall the Beurling function Fp : C× C→ R

Fp (ξ, ζ)
def
== | ξ|p − (p ∗ − 1)p | ζ|p , 1 < p <∞ ,

and the Burkholder’s function

Bp (ξ, ζ)
def
==

[
| ξ| − (p∗ − 1) | ζ|

]
·
[
| ξ| + | ζ|

]p−1
.
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Then the rank-one concave envelope of Fp is given by the following formula.

For p > 2,

Fap (ξ, ζ) =

{
| ξ|p − (p ∗ − 1)p|ζ|p = Fp (ξ, ζ) if (p ∗ − 1) |ζ| > |ξ|
p (1− 1/p ∗)p−1 Bp if (p ∗ − 1) |ζ| 6 |ξ|

While, for 1 < p < 2,

Fap (ξ, ζ) =

{
p (1− 1/p ∗)p−1 Bp if (p ∗ − 1) |ζ| > |ξ|
Fp (ξ, ζ) if (p ∗ − 1) |ζ| 6 |ξ|

Burkholder [26] shows this in a slightly different sense. Namely, that the

envelope function above is the smallest majorant of Fp which is concave in

orientation-reversing directions (as discussed on page 5). See also, p. 64 in

[17]. The result as stated here basically follows from the work [54].

Proof. Let us denote by E(ξ, ζ) the formula given above. Our task is to

show that Fap = E. For any pair θ1, θ2 ∈ [0, π), consider the function

Fap,θ1,θ2 : R× R→ R,

(x, y) 7→ Fap (eiθ1x, eiθ2y).

Using rank-one concavity of Fap we see that Fap,θ1,θ2 is zig-zag concave, that

is, concave in the directions of ±π/4 in R2. By the results (Theorem 6 and

7) of [54] on the zig-zag concave envelope of |x|p − (p∗ − 1)p|y|p, we have

that Fap,θ1,θ2(x, y) > E(|x|, |y|). Since, this is true for any θ1, θ2 ∈ [0, π) we

have the inequality Fap (ξ, ζ) > E(|ξ|, |ζ|) = E(ξ, ζ). On the other hand, as

we have remarked E is rank-one concave so Fap = E as claimed. �
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